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Summary

Multilocus genotype probabilities, estimated using the assumption of independent association of alleles within
and across loci, are subject to sampling fluctuation, since allele frequencies used in such computations are

derived from samples drawn from a population. We derive exact sampling variances of estimated genotype
probabilities and provide simple approximation of sampling variances. Computer simulations conducted
using real DNA typing data indicate that, while the sampling distribution of estimated genotype probabilities
is not symmetric around the point estimate, the confidence interval of estimated (single-locus or multilocus)
genotype probabilities can be obtained from the sampling of a logarithmic transformation of the estimated
values. This, in turn, allows an examination of heterogeneity of estimators derived from data on different
reference populations. Applications of this theory to DNA typing data at VNTR loci suggest that use of
different reference population data may yield significantly different estimates. However, significant differ-
ences generally occur with rare (less than 1 in 40,000) genotype probabilities. Conservative estimates of
five-locus DNA profile probabilities are always less than 1 in 1 million in an individual from the United
States, irrespective of the racial/ethnic origin.

Introduction

With more than 4,000 discovered genetic polymor-
phic loci available in the human genome (Solomon
and Rawlings 1991), it has become possible to define
multilocus genotypes for any specific individual for
any given subset of these loci. Since many of these
loci exhibit a large number of segregating alleles, the
number of possible mutilocus genotypes can be very
large. For example, since a typical VNTR locus can
easily exhibit 20 or more segregating alleles (Odelberg
et al. 1989), four such loci will produce [(20x21)/
2]42 billion possible genotypes or more. In many
applications of multilocus genotype data, it is im-
portant to know the relative frequencies of such geno-
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types in a population. Therefore, it is relevant to con-
sider how to estimate the multilocus genotype
probabilities and to assign bounds of errors of their
estimates. Intuitively, the simplest and most direct
method would be to predict genotype (single-locus or
multilocus) probabilities from their relative frequen-
cies observed in a sample. This is feasible- and is found
reliable -for single-locus genotypes at the traditional
blood-group and protein loci (Mourant et al. 1976;
Tills et al. 1983). But, because of large numbers of
segregating alleles at VNTR loci, and because of the
fact that the exact number of possible alleles at such
loci may be unknown (Chakraborty and Daiger 1991;
Devlin et al. 1991), by necessity, it is apparent that
alternative methods must be employed to estimate
multilocus genotype probabilities for VNTR loci
(Chakraborty 1992). However, this challenge is not
unique to VNTR loci.

Genotype probabilities at HLA loci generally are
computed from HLA-haplotype frequencies (Albert et
al. 1984), and this analogy also holds for the immu-
noglobin Gm genotype computations (Steinberg and
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Cook 1981). In other words, the theory of predicting
(single-locus or multilocus) genotype probabilities on
the basis of allele frequency data has been employed
based on Hardy-Weinberg expectations (HWE) for
random union of alleles and on the chain-multiplica-
tion rule to combine individual locus-specific genotype
probabilities (Li 1976). Of course, to justify this
method it is necessary to establish random association
of alleles within as well as across loci in multilocus
data observed in a sample, which has been a subject
of various studies (Chakraborty and Kidd 1991; Risch
and Devlin 1992; Weir 1992; Chakraborty et al., in
press-a). Although it is well known that deviations
from the product (i.e., HWE) and chain-multiplica-
tion (gametic-phase disequilibria) rules may result
from population mixture and/or substructuring pres-
ent in a population (Li 1976), in the context of analysis
of VNTR data gathered by the RFLP typing, it is
shown that both of these assumptions are adequate.
For example, when artifacts (such as incomplete reso-
lution of similar-size RFLP alleles) of the electrophore-
sis technique were taken into account, Devlin et al.
(1990) showed no significant excess of homozygosity
in VNTR data in the U.S. populations. Use of in-
traclass correlations ofDNA fragment lengths within
loci revealed that the HWE assumption is reasonable
(Weir 1992; Chakraborty et al., in press-a), and no
significant gametic-phase disequilibrium was noted in
the analysis by Risch and Devlin (1992). Furthermore,
Chakraborty and Jin (1992) demonstrated that the
initial observation of heterozygote deficiencies (equiv-
alent to excess homozygosity) noted by Budowle et al.
(199la) cannot be explained by population substruct-
uring alone. Presence of nondetectable alleles and/or
incomplete resolution of similar-size alleles is a more
appropriate factor that explains such observations
(Chakraborty et al. 1992a). Finally, elsewhere (Chak-
raborty et al., in press-b) we show that the assump-
tions of alleles within and across loci lead to conserva-
tive (biased upward) estimates of multilocus genotype
probabilities, with a simple modification ofthe estima-
tion of homozygous genotype probabilities, as indi-
cated later in the presentation.

Since, even in the above approach, the estimated
genotype probabilities depend on allele frequency esti-
mates, which are in turn subject to sampling fluc-
tuation, the purpose of this work is to evaluate the
standard errors of estimates of multilocus genotype
probabilities based on allele frequency data. We show
the derivation of the exact sampling variance for any
general multilocus genotype. We further argue that,

since multilocus genotype probabilities are generally
small, their sampling distributions are not symmetric
around the point estimate. Therefore, we discuss an
approach of confidence interval estimation of multilo-
cus genotype probability, using the sampling proper-
ties of a logarithmic transformation of such probabili-
ties. The reliability of this methodology is checked
by computer simulation. Using this theory, we finally
describe a test of heterogeneity of different estimates
of the same multilocus genotype probability, obtained
from different reference populations. This allows a
statistical interpretation of comparison oftwo or more
estimates, each of which is small but which may differ
from each other by severalfold. Finally, we discuss
the appropriateness of such analyses in the context of
VNTR fragment size data, because of the quasi-
continuous nature of VNTR fragment size measure-
ments in all population samples.

Relative Frequencies of Multilocus Genotypes,
and Their Standard Errors

Consider L autosomal codominant loci at each of
which there are multiple alleles segregating in a popu-
lation. For the eth locus (f = 1, 2, . . . , L), under
the assumption of Hardy-Weinberg equilibrium, the
genotype probability P1 takes one of the two following
forms:

pI= pI for homozygotes
{ 2p,q, for heterozygotes, (1)

where pi and q, are the respective allele frequencies
in the population. Under the assumption of random
association of alleles across loci (gametic phase equi-
librium; Li 1976; Weir 1990), for any set ofL loci, the
multilocus genotype frequency is given by

L

Pcom = 1 IP
1=1

(2)

which assumes that the relevant alleles at different loci
aggregate at random to form multilocus genotypes in
individuals of the population.
As defined above, equations (1) and (2) are applica-

ble to the entire population, and in practice they must
be estimated. This is done from a sample of individuals
drawn from the population, from which counts of
alleles in a sample of n/2 individuals (i.e., n alleles)
the estimate of pi (or qj) becomes
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(3) for any continuous functionf(x), of a random variable
x, we have

which, substituted in equation (1), gives the estimate,
P., of any single-locus genotype probability. Through
equation (2), this in turn generates the estimated
multilocus probability, say, Pcom.

Direct application of the sampling theory of the
multinomial distributions (Johnson and Kotz 1969)
gives the sampling variance of PI (for the critical steps
of the derivation, see the Appendix), given by

([4p?(1 - pi)/n] + [2p1(1 - pi)(3 - 5pi)/n2] +
V(P1) - [p,(1 - p,)(1 - 6p, + 6p1)/n3] for homozygotes

4plq[[(pl+ql-4pq)/n] + [(1 -3p,-3qi+ lOpql)/n2] -
[(1 - 2pi - 2qi+ 6pjqi)/n3] for heterozygotes.

(4)

These are the expressions for exact variance of P1 for
any single-locus genotype probability. Note that when
the genotype probability is estimated from allele fre-
quencies (by using eq. [1]), the estimates are not unbi-
ased. For example,

E(P,) = t' +[p1(1-p1)/n]
for homozygotes (5)
for heterozygotes,

so that for each homozygote, P1 is an overestimate of
the true probability, while for heterozygotes, P1 is an
underestimate. The bias, however, is negligible when
the sample size (n) is large, say, when 100 or more
individuals are sampled.

There is another reason for which an unbiased esti-
mator of P1 may not be preferred. For example, by eq.
(5) the unbiased estimator of pi becomes

P ((nPi- ii)/(n- 1) for homozytotes (Sa)
nPI(n - 1) for heterozygotes,

and hence the unbiased estimate of a homozygous ge-
notype becomes zero if the allele is found to have a

single copy in the sample (i.e., PI = 1/n and PI =

1/n2).
The expressions of equation (4) are fairly compli-

cated, and simpler approximations are available that
ignore terms of order n-2 or lower. Using the approxi-
mation

V[fx)] df(x) JV(x) (6)Ldx

V(pA) 4p2V(Al)
4pl(1 -p)

n

(7a)

and

V(2p511) 4[ 0V(q ) + aq v(Pi )

+ 2(8aPil)()aPiq)Cov(plql)]

= 4 -q?Pl Pi) + pi q(1- ql)
n n

(7b)

- 2pjqj plq
n

4p qI[p + ql - 4plq,1

L n

which are the first terms of equation (4) for homozy-
gotes and heterozygotes, respectively.

Once V (PI) is obtained as described above, and
since the estimated P,'s for different loci are indepen-
dent, from Goodman (1960, 1992) we have

L

V(Pcom) !2Pom[0 GI+ >2Y2G,1G13
[1=1 11< 12

+ Z22G1jG1G2+
11<12<13

L+ (8)
+ GIIG

= 112mt~ +G-]

where G1 = V(PA)/P 2, giving the sampling variance of
the estimated probability of the multilocus genotype.
In equation (8) one can use either the exact expressions
for V(P,), as given in equation (4), or their approxi-
mations, equations (7a - 7b); the approximations are

generally fairly accurate, which will be shown below.
Further approximations may also be done without
compromising the accuracy of the estimated variance.
For example, in equation (8), since each GI value is

P = ni
n
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generally small, the variance of Pcom can be approxi-
mated, keeping only the first summation. Since equa-
tion (8) is not tedious to compute, we recommend that
this later approximation is unnecessary, and hence in
this work

L~~~~~~
V(cm) pC2om t(1 + V(PI)/pi)1] (a

will be called "approximate variance of Pwm, in which
V(P1) is computed from equations (7a 7b).

Confidence Interval of Multilocus Probability

While equations (4), (7), and (8) provide the sam-
pling errors of estimated probabilities of any multilo-
cus genotype, these may not provide an accurate con-
fidence interval of Pcom, because Pcom is generally small
and its sampling distribution is not symmetric around
the point estimate. In contrast, noting that equation
(2) yields

L

ln(Pcom) = Zln(PI), (9)
1=1

we can use the approximation of equation (6) to get

V [ln(Pcom)]_ E

1=1 t (10)
=S2

say, which gives a lOOa% confidence interval for
ln(Pwm) defined by

ln(Pcom) ± Zascom , (1 1)

where Za is the two-sided lOOa% value of a standard
normal distribution. The lower and upper limit, U and
L, respectively, of the interval represented by equation
(11) can be transformed to get the confidence interval
of Pwm, given by (eL,eU).

Alternatively, since Pcom is obtained from a set of
estimated probabilities Pi and c1, and their associated
n for each locus, the empirical confidence interval of
ln(Pom) can be generated by simulating multinomial
distribution (up to three classes for each locus) to de-
termine L and U, which can be used to obtain the
confidence interval of Pcom, (eL,eU). In the following
section we show that the approximation given in equa-

tion (11) is fairly accurate for the purpose of generat-
ing confidence intervals of Pcom.

Applications of the Theory and Accuracy
of the Approximations

Bias of Estimated Pcorn and Accuracy of Approximate
Variance of Pconm

In table 1 we present six examples of the application
of the theory described in the previous sections. For
the present, assume that there are six genotype data,
giving genotype profiles based on single-locus (case 1)
through six-loci (case 6) data in which the columns
under the heading "xi1" and "X2" may be regarded as
the allelic designations of the genotypes. Also pre-
sented in this table are the frequencies of the alleles for
each locus scored (for each genotype) in three popula-
tion samples. In this section we will consider the allele
frequency data for the first population sample, to illus-
trate the theoretical calculations described before; and
in a later section we will consider the remaining allele
frequency data, to examine the heterogeneity of geno-
type probability estimates based on these different ref-
erence population data.

In table 2 are shown the estimated genotype proba-
bilities (based on the allele frequency data from the
Caucasian population sample; table 1) in which the
first set ofestimated values (biased) are from equations
(1) and (2) and in which the second ones (unbiased)
are from equation (Sa), and these are multiplied values
over loci. The last three columns of table 2 represent
the standard errors of the first set of estimates; the
estimated values are computed using equations (7a -

7b), the exact values are from equations (4) and (8),
and the empirical ones are from simulations of
multinomial distributions (2,000 replications) with al-
lele frequency and sample size data for the Caucasian
sample, shown in table 1. For each case, the approxi-
mations appear accurate even when only the first terms
of the respective equations (e.g., eqq. [1] and [7]) are
kept. This is true irrespective of the allele frequencies.
The bias of estimation also is small, as seen from com-
parison of the estimated and exact predictions. While
the empirical values (averages from simulation of
multinominal distributions with 2,000 replications)
of the genotype probabilities generally agree with the
estimates (exact or approximate), the empirical stan-
dard errors of estimates are always smaller than the
estimated standard errors (from our analytical equa-
tions). This is expected, since even in 2,000 replica-
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Table I

Six Examples of DNA Typing in Forensic Works from Three Populations

FREQUENCIES (sample size) OF BINNED ALLELES

BAND SIZE Caucasians Blacks Hispanics

CASE AND Locus X11 X21 P q, Pi q, Pi q,

1:

D2S44 ........... 1,605 1,605 .124 .124 (1,584) .093 .093 (950) .112 .112 (1,032)

2:
D14S13 ........... 1,787 1,360 .144 .053 (1,502) .073 .068 (1,048) .107 .055 (988)

D17S79 ........... 1,301 1,301 .224 .224 (1,552) .256 .256 (1,100) .268 .268 (1,042)

3:
D2S44 ........... 3,486 1,819 .075 .083 (1,584) .039 .093 (950) .062 .100 (1,032)

D14S13 ........... 2,089 1,793 .081 .144 (1,502) .086 .073 (1,048) .067 .107 (988)

D17S79........... 1,741 1,486 .199 .198 (1,552) .107 .195 (1,100) .183 .166 (1,042)

4:
D1S7........... 4,150 2,333 .062 .029 (1,190) .074 .035 (718) .090 .044 (1,042)

D2S44 ........... 1,915 1,799 .083 .107 (1,584) .084 .093 (950) .100 .105 (1,032)

D4S139........... 7,618 6,100 .131 .108 (1,188) .109 .103 (896) .175 .137 (1,044)

D17S79 ........... 1,772 1,551 .199 .263 (1,552) .107 .195 (1,100) .183 .255 (1,042)

5:
D1S7........... 4,150 2,333 .067 .029 (1,190) .074 .029 (718) .090 .019 (1,042)

D2S44 ........... 2,772 2,357 .040 .038 (1,584) .028 .076 (950) .045 .040 (1,032)
D4S139 ........... 8,537 5,986 .095 .108 (1,188) .109 .084 (896) .130 .137 (1,044)

D14S13 ........... 1,826 1,573 .144 .228 (1,502) .073 .078 (1,048) .107 .218 (988)

D17S79 ........... 1,566 1,566 .263 .263 (1,552) .195 .195 (1,100) .255 .255 (1,042)

6:
D1S7........... 6,520 4,500 .079 .067 (1,190) .064 .050 (718) .081 .081 (1,042)

D2S44 ........... 1,780 1,601 .107 .124 (1,584) .093 .093 (950) .105 .112 (1,032)
D4S139 ........... 14,302 6,630 .102 .191 (1,188) .038 .103 (896) .071 .167 (1,044)

D1OS28 ........... 2,205 2,205 .059 .059 (858) .076 .076 (576) .093 .093 (880)

D14S13 ........... 3,453 2,124 .030 .081 (1,502) .060 .086 (1,048) .048 .067 (988)

D17579 ........... 1,302 1,302 .224 .224 (1,552) .256 .256 (1,100) .268 .268 (1,042)

tions of simulations, the rare genotypes will not be rence) method is not a good practice for estimation of
represented, and hence it will reduce the observed small genotype probabilities. Other inadequacies of
sampling variance of the estimated genotype probabil- the direct-count method are also discussed by Morton
ity when relative counts of genotypes are used. This, (1992). Furthermore, these numerical results indicate
indeed, shows that the direct count (relative-occur- that the use of analytical standard errors (with approx-

Table 2

Estimated Probabilities of DNA Profiles, and Their Standard Errors

ESTIMATE OF PROBABILITY OF STANDARD ERROR
DNA SAMPLE (Pcom) (of Pom)

CASE By eq. (1) - (3) By eq. (5a) Exact Estimate Empirical

1 Combined............ 1.53 x 10-2 1.54 x 10-2 2.06 x 10-3 2.05 x 10-3 1.44 x 10-3
2 Combined............ 7.65 x 10-4 7.66 x 10-4 1.17 x 10-4 1.17 x 10-4 1.07 x 10-4
3 Combined ............ 2.28 x 10-s 2.29 x 10-5 3.81 x 10-6 3.80 x 10-1 2.99 x 10-6
4 Combined............ 1.88 x 10-7 1.89 x 10-7 4.80 x 10-8 4.79 x 10-1 4.21 x 10-8
5 Combined ............ 1.10 x 10-9 1.10 x 10-9 3.37 x 10-10 3.37 x 10-1° 1.90 x 10-10
6 Combined ............ 9.46 x 10-12 9.29 x 10-12 3.61 x 10-12 3.58 x 10-12 3.02 x 10-12
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imation; eqq. [7a - 7b] substituted in eq. [8]) would
provide a confidence interval that would be conserva-

tive (wider than the empirical).

Confidence Interval Estimation

Table 3 provides the confidence interval estimates
for the six cases described in table 1. The estimated
confidence intervals are from normal approximation
of the sampling distribution of ln(Pcom) shown in equa-
tion (11), while the empirical ones are from 2,000
replications of multinominal sampling (for each locus)
using parameter values corresponding to the Cauca-
sian sample data of table 1. Two observations can be
made from these computations. First, the empirical
confidence intervals, for ln(Pcom) and Pc0m, are always
narrower than the estimated ones. This occurs because
the rare genotypes are not represented in the simula-
tions, which artificially tightens the spread of the ob-
served relative genotype frequencies, making the resul-
tant confidence interval narrower than expected.
Again, this illustrates the limitation of the direct-count
method of estimation of small genotype probabilities.
Second, when the confidence bounds for Pcom are com-

pared with their respective estimates (shown in table
2), we find that the sampling distribution of Pcom is
asymmetric around the point estimates, while the sym-
metry of empirical confidence intervals of ln(Pcom)

around its point estimates ensures the normal approxi-
mation used (eq. [11]) in obtaining the estimated con-

fidence intervals of the logarithmic transformation of
genotype probabilities.

Test for Heterogeneity of Estimated Probabilities

Once the probability of a specific multilocus geno-

type is estimated, often a question arises whether such
an estimate obtained using data sampled from another
reference population would be significantly different.
In general, empirical estimates of specific genotypes,
derived from various alternative reference population
data, have been shown to differ, but not in any mean-
ingful way (i.e., no multilocus genotype that is rare in
a population becomes common in another population;
e.g., see Chakraborty and Kidd 1991; Weir 1992).
However, the theory described in the previous sections
can be used to formally test whether the estimated
multilocus genotype probabilities based on different
sets of allele frequency data are significantly different.
This can be done using Rao's heterogeneity X2 test
criterion (Rao 1973), applied on lnPcom estimates,
since the sampling distribution of this statistic approx-
imates a normal distribution, as shown earlier. Sup-
pose that t, = ln[Pwm(i)] denotes the logarithm of the
estimate of a multilocus DNA profile from the ith set
of allele frequency data i = 1, 2,..., r and that

Table 3

Confidence Interval Estimates of Multilocus DNA Profile Frequencies

ln(Pcom) Pcom
Upper 95% Lower 95% Point Estimate Upper 95% Lower 95%

1:
Estimated -.4.44 ..........4 - 3.91 -4.17 1.18 x 10-2 1.99 x 10-2
Empirical -4.36 -4.00 -4.19 1.27 x 10-2 1.82 x 10-2

2:
Estimated -7.47 -6.87 -7.17 5.67 x 10-4 1.03 x 10-3
Empirical -7.26 -6.94 -7.12 7.03 x 10-4 9.61 x 10-4

3:
Estimated ............ -11.01 -10.36 -10.68 1.65 x 10-5 3.17 x 10-1
Empirical. -10.84 -10.49 -10.68 1.95 x 10-5 2.79 x 10-5

4:
Estimated -.15.98 -14.98 -15.48 1.15 x 10-7 3.11 x 10-7
Empirical -15.73 -15.22 -15.45 1.48 x 10-7 2.46 x 10-7

5:
Estimated -21.23 -20.03 -20.63 6.05 x 10-10 2.00 x 10-9
Empirical. -20.69 -20.36 -20.53 1.03 x 10-9 1.44 x 10-9

6:
Estimated -26.16 - 24.65 -25.40 4.36 x 10-12 1.98 x 10-11
Empirical. -25.77 -25.15 -25.40 6.40 x 10-12 1.19 x 10-11
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s2 is the variance of this estimate (obtained from eq.

[10]). The different sets of allele frequencies could be
from different populations and/or could be data from
different laboratories. The heterogeneity of these esti-
mates is tested by the criterion

r /r 2

X = ,/si ,- tils, Evs (12)
i=1 i=1 i=1

which is asymptotically distributed as a x2 with (r -

1) df. If this test criterion suggests that the various
estimates are not heterogeneous, the pooled estimate
is given by

Y(ils ) Zl ) (13a)

whose sampling variance is

e

s2= Z(1/sz)-1. (13b)
i=1

The pooled estimate of Pcom based on all available
allele frequency data would then be given by er, while
its confidence interval can be obtained by using i and
S2in equation (11) and translating the upper and lower
limits, as done earlier for a single set of allele frequency

data. Table 4 shows the application of this test proce-
dure for the six sets of genotype data shown in table 1.
Alternative estimates of these genotype probabilities
were obtained by using the allele frequency data from
the three samples (Caucasian, black, and Hispanic)
given in table 1). While these examples are used only
for illustrative purposes, the results are instructive in
several respects. First, it is true that use of different
reference population data might yield different esti-
mates of the same DNA profile probability, but such
differences are statistically significant (as detected by
the heterogeneity x2 statistic) only when the estimates
are small (in these examples, below 1 in 40,000). Sec-
ond, in all cases shown in table 4, the heterogeneity
X2 statistic is contributed mainly by the low estimate
obtained from the sample of U.S. blacks. This is con-
sistent with the evolutionary history ofhuman popula-
tions. The U.S. blacks, 75% or more of whose gene

pool is of African origin (Reed 1969; Chakraborty
1986; Chakraborty et al. 1992b), probably represent
the oldest major racial group of the world (Nei and
Roychoudhury 1982; Bowcock et al. 1991), and be-
cause of past as well as recent admixture they also
have the highest gene diversity within them. This is
true not only with respect to a greater number of alleles
(Mohrenweiser et al. 1987), but also with respect to
the frequencies of specific alleles within blacks, which
are generally lower compared with those in other ra-

Table 4

Test of Heterogeneity of PO... Estimates from Different Samples

Case and Estimate Caucasians Blacks Hispanics x2 (2df)

1:
logPcom .-4.17 ± .13 -4.74 ± .20 -4.37 ± .17 5.62
P.om........................ 1/65 1/114 1/79

2:
lOgPcom ............... -7.17 ± .15 -7.34 ± .18 -7.07 ± .19 1.03
P.M.......................1/1,304 1/1,534 1/1,181

3:
lOgP.om ............... -10.69 ± .17 -12.48 ± .25 -11.44 ± .22 35.83**
Pcom .......... ..... 1/43,777 1/263,870 1/92,849

4:
lOgPom. -15.48 ± .25 -16.40 ± .31 -14.11 ± .24 36.09**
P.om .......... ..... 1 /(5.3 x 106) 1/(13.2 x 106) 1/(1.3 x 106)

5:
lOgPcom............... -20.63 ± .31 -22.66 ± .41 -20.43 ± .36 20.44* *
P.om .......... ..... 1/(9.1 x 108) 1 /(6.9 x 109) 1 /(7.5 x 108)

6:
logPcom............... -25.38 ± .38 -26.39 ± .46 -24.25 ± .37 13.63**
P.om .......... ..... 1/(1.1 x 1011) 1 /(2.9 x 1011) 1/(3.3 x 1010)
** P< .001.
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cial groups. These result in smaller genotype probabil-
ities (at both the single-locus and multilocus levels),
consistent with the findings in table 4. Third, the sig-
nificant differences of multilocus genotype probability
estimates for the different racial groups may have also
emerged from the fact that we used rebinned fragment
size distributions (Budowle et al. 1991b) in which the
binned class limits are different for the three racial
groups, and hence the different probability estimates
do not always correspond to identical fragment size.

Applications to Forensic DNA Typing Data

Although in both theory and application we spe-

cifically used the concept of discrete alleles and geno-

types, the principles also apply to forensicDNA typing
data. In current forensic applications ofDNA typing,
DNA samples are digested with a restriction enzyme

and are hybridized with a single-locus VNTR probe
(e.g., MS1, YNH24, TBQ7, CMM101, V1; see Na-
kamura et al. 1987; Budowle et al. 1991a, 1991b).
These generally give a single-band or two-banded pat-
tern due to copy-number variation of the core repeat
sequences at the VNTR locus. Sizes (approximate
numbers of base pairs) of the relevant bands are deter-
mined by automated algorithms and by then compar-

ing them with size standards run concurrently in
Southern gel electrophoresis. Technical limitations of
band sizing from Southern gels cannot eliminate mea-
surement errors (Budowle et al. 1991a; Evett 1991;
Berry et al. 1992), but, in general, measurement errors

are small (about 2.5% or smaller) with respect

to VNTR fragment sizes. Instead of definition of an

allele by its actual fragment size, two alternative ap-

proaches of "binning" fragment sizes in population
data have been suggested-i.e., "fixed" or "floating"
bins (Budowle et al. 1991a, 1991b; Foreman 1991)-
whereby fragment sizes are grouped in reference to the
extent ofmeasurement error for size range offragment
lengths (either by fixed class limits [Budowle et al.
1991a] or by allowing a certain width around the spe-

cific size observed for a given fragment length [Balazs
et al. 1989; Foreman 1991]). The population data on
fragment lengths would then correspond to catego-

rized classes, analogous to allele frequency data in the
case of the fixed-bin approach. In the case of floating
bins, there is no uniform set of categories for all frag-
ment sizes. But, since for any given individual we ob-
serve up to two different fragment sizes, the popula-
tion data will be grouped in up to three categories
specifically constructed for the given observation. This

definition of binned alleles is no different from the
traditional definition of alleles that are technology
based (Morris et al. 1989). Therefore, the logic of
the theory applies to DNA typing data as well, and
measurement errors offragment lengths are embedded
in the definition of binned alleles.
We also should note that, for single-bandDNA pat-

terns at a locus, we used the probability pi, assuming
that the single-band patterns reflect true homozygos-
ity. It is known that this may not always be true, since
single-band patterns sometimes may result from the
inability to detect another allele, which is either too
small or too large to be scored in the Southern gel
protocol (Budowle et al. 1991a; Chakraborty et al.
1992a). To guard against this, Budowle et al. (1991a)
suggested a further conservative approach, represent-
ing the probability of a single band pattern by 2p,.
The variance for such a probability estimate is even
simpler, since V(P1) = 4p, (1 - pi)/n, which can be
used instead ofthe formula given in the first expression
of equation (4) (or eq. [7a]). By analogy, the theory
described here also can be used to determine the stan-
dard error or confidence interval of phenotype proba-
bility estimates. The expression for V (PI) needs to be
changed suitably with the definition of the pheno-
types. As mentioned before, this simple change in esti-
mating a homozygous genotype probability, when
used in conjunction with the chain-multiplication rule,
gives an overestimate of any multilocus genotype
probability, even if the population is not strictly a
random mating one (Chakraborty et al., in press-b).
At this stage, we go back to the example of six

genotypes shown in table 1. They are, indeed, six ac-
tual DNA profiles, and the second column of table 1
indicates the VNTR fragment sizes (represented by xi
and X21 for the two bands observed at the Ith locus) for
the corresponding VNTR loci. The allele frequencies
in three samples (shown in the last three sets of col-
umns of table 1) are the "rebinned allele" frequencies
for the pooled data on Caucasians, blacks, and His-
panics, collected from different geographic locations
in the United States by the Federal Bureau of Investiga-
tion (FBI) Forensic Sciences Research Unit and pub-
lished by Budowle et al. (1991b).
To illustrate the general nature of the confidence

intervals for DNA profile frequencies for all individu-
als in the FBI data base, we computed the estimate of
each person's observed DNA profiles, grouping them
by their recorded race/ethnicity and using the race-
specific rebinned allele frequencies (Budowle et al.
1991b). The fragment size data were provided by Dr.
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Bruce Budowle (FBI Academy) for this analysis. Figure
1 shows the confidence interval estimates plotted
against the point estimates for each individual's DNA
profile. Specifically, for each individual's DNA profile
(based on all loci scored for the individual) in the data
base, the upper and lower 95% confidence interval

A limits of Pcom are plotted against Pcom, generating the
lines of each panel of figure 1. The wide range of
estimates is expected, since the data consist of variable
numbers of loci scored for different individuals (from
one locus up to six loci). In each panel, therefore, we
indicate the range of point estimates of DNA profile
frequencies, shown by horizontal points. All calcula-
tions shown in this figure are in logarithmic (base 10)
scale.
At this stage we note that the numerical values plot-

ted in figure 1 are based on the approximations used in
deriving equations (10) and (11). Although we verified
the accuracies of these approximations by using the
six examples shown in table 1, these examples truly
represent six individual's DNA profiles that are close
to the averages of one-locus to six-loci profiles, shown

B in figure 1. The limited number of illustrations of the
adequacy of approximations should not be a concern,
since they encompass almost the entire range of
multilocus genotype probabilities in the data base (see
fig. 1). In fact, since each individual's DNA profile in
the data base is unique, almost 2,000 (size of the data
base) separate simulations (each with 2,000 replicates)
would have been necessary to check the accuracy ofthe
numerical values plotted in this figure. Nevertheless,
data presented in table 3 indicate that the plotted con-
fidence limits are wider than the empirical ones, be-
cause, even with 2,000 replications of multinomial
distributions, rare genotypes may not be captured.
Data shown in figure 1 illustrate three points. First,

it is not generally true that every single-locus DNA
profile would be more frequent than any two-locus

C profile, since the horizontal points are overlapping for
all ethnic groups. But, in general, the profile frequency
is a decreasing function of the number of loci scored.
This supports Crow's view (see Roberts 1991) that,
with more loci scored, the specific DNA profile fre-
quency would reach a diminishing value, irrespective

0 5 10 15 20

log10 (probability)

Figure 1 95% confidence interval (95% C.I.) estimates for
DNA profile probabilities observed in the FBI data base (Budowle
et al. 1991b), plotted against the estimates. All values are in a

logarithmic (base 1O) scale, so that the probabilities and confidence

limits are to be interpreted as 1/x, x in log(baselO) scale. The
individuals are differentiated on the basis of their racial/ethnic ori-
gin: A, 840 Caucasians; B, 583 blacks; and C, 552 Hispanics. Also
shown in the graph as horizontal points are the ranges of estimated
DNA profile probabilities for individuals having one-locus to six-
locus data in the data base.
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either of the racial origin of the individual or of the
specific DNA profile observed. Second, it is true that
the confidence interval (as judged by the ratio of the
upper and lower limit) gets wider as the profile fre-
quency becomes rarer (or, x gets larger). This is an
inherent sampling property, and it explains how a rare
DNA profile can have sampling fluctuation enough to
make the confidence limits (upper and lower) different
by more than one order of magnitude. Third, in spite
of the relatively large standard errors of estimates of
rare genotype profile frequencies, this figure supports
Risch and Devlin's (1992) assertion that, irrespective
of the racial/ethnic origin of individuals, most five-
locus DNA profiles have a frequency no larger than 1
in 1 million, in fixed-bin data.
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Appendix

Derivation of Equation (4)
If in a sample of n alleles (n/2 individuals), nil and n2i
of them reside in bins B1i and B21, and the expectations
of these frequencies are

E(nii) = np andE(n2l) = nql, (Al)

where pi and q1 are the true probabilities that DNA
fragments are in bins B1l and B21 in the population.
Furthermore, using the general theory of multinomial
sampling (Johnson and Kotz 1969), we have

E(ni,) = n(n-1)pt+np1 (A2)

and

E(nli) = E[nii(nn - 1 )(n1, - 2)(nii - 3)
+ 6nn,(nii -1)(n1,-2)
+ 7nn(nul- 1) + nl] (A3)
= n(n - 1)(n - 2)(n - 3)pt
+ 6n(n-1)(n-2)pP
+ 7n(n-1)pF+np1.

Therefore,

V(,jl) = V(n21)/n4
= n(n -1)(n - 2)(n - 3)pt
+ 6n(n-1)(n-2)pl (A4)
+ 7n(n - 1)pj + np/ n4
- [(n(n -1)p + npi)/n2]2.

Algebraic simplification of equation [A4] leads to the
expression given in equation (4) for homozygotes.

For heterozygotes, we have to use PI = 2P,41 =
2n1vn21/n2. Again, as given by Johnson and Kotz
(1969),

E(nnin2l) = n(n- 1)pql (AS)

and

V(nijn21) = E(ni2nil) - E2(n11n21)
= E[nX(nll- 1)n2X(n2i- 1)
+ nlii(nli - 1)n2l+ nlln2I(n21- 1)

+ niin2l] - E2(n11n2l) (A6)
= n(n - 1)(n - 2)(n - 3)pjq1
+ n(n-1)(n- 2)ptqj
+ n(n - 1)(n - 2)piqj + n(n - 1)piql
- n2(n-1)2piqt.

Dividing equation (A6) by n4 and rearranging the
terms, we get the variance of P1 for heterozygotes that
is given in the second part of equation (4).

References
Albert ED, Baur MP, MayrWR (1984) Histo-compatibility

testing. Springer, New York
Balazs I, Baird M, Clyne M, Meade E (1989) Human popu-

lation genetic studies of five hypervariable DNA loci. Am
J Hum Genet 44:182-190

Berry DA, Evett 1W, Pinchin R (1992) Statistical inference
in crime investigations using deoxyribonucleic acid pro-
filing. Appl Stat 41 :499-531

BowcockAM, KiddJR, MountainJL, HerbertJM, Caroten-
uto L, Kidd KK, Cavalli-Sforza LL (1991) Drift, admix-
ture, and selection in human evolution: a study withDNA
polymorphisms. Proc Natl Acad Sci USA 88:839-843

Budowle B, Giusti AM, WayeJS, Baechtel FS, Fourney RM,
Adams DE, Presley LA, et al (1991a) Fixed-bin analysis
for statistical evaluation of continuous distributions of
allelic data from VNTR loci, for use in forensic compari-
sons. Am J Hum Genet 48:841-855

Budowle B, Monson KL, Anoe KS, Baechtel DL, Bergman
DL, Buel E, Campbell PA, et al (1991b) A preliminary



70 Chakraborty et al.

report on binned general population data on six VNTR
loci in caucasians, blacks and hispanics from the United
States. Crime Lab Dig 18:9-26

Chakraborty R (1986) Gene admixture in human popula-
tions: models and predictions. Yearbook Phys Anthropol
29:1-43

(1992) Sample size requirements for addressing the
population genetic issues of forensic use of DNA typing.
Hum Biol 56:141-159

Chakraborty R, Daiger SP (1991) Polymorphism at VNTR
loci suggest homogeneity of the white population of Utah.
Hum Biol 63:571-587

Chakraborty R, de Andrade M, Daiger SP, Budowle B
(1992a) Apparent heterozygote deficiencies observed in
DNA typing data and their implications in forensic appli-
cations. Ann Hum Genet 56:45-57

Chakraborty R,Jin L (1992) Heterozygote deficiency, popu-
lation substructure and their applications in DNA finger-
printing. Hum Genet 88:267-272

Chakraborty R, Kamboh MI, Nwankwo M, Ferrell RE
(1992b) Caucasian genes in American blacks: new data.
Am J Hum Genet 50:145-155

Chakraborty R, Kidd KK (1991) The utility ofDNA typing
in forensic work. Science 254:1735-1739

Chakraborty R, Srinivasan MR, de Andrade M. Estimation
of intraclass and interclass correlations of allele sizes es-
tablishes random association of alleles within and be-
tween loci in DNA typing data. Genetics (in press-a)

Chakraborty R, Srinivasan MR, Jin L, de Andrade M.
Effects of population subdivision and allele frequency
differences on interpretation of DNA typing data for hu-
man identification. In: Proceedings of the Third Interna-
tional Symposium on Human Identification. Promega,
Madison (in press-b)

Devlin B, Risch N, Roeder K (1990) No excess of homozy-
gosity at loci used for DNA fingerprinting. Science 24:
1416-1420

(1991) Estimation of allele frequencies for VNTR
loci. Am J Hum Genet 48:662-676

Evett 1W (1991) Trivial error. Nature 354:114
Foreman L (1991) The role of DNA in courtroom: issues

and concerns in the analysis ofVNTRs for forensic inves-
tigations. Am J Hum Genet Suppl 49:64

Goodman LA (1960) On the exact variance of products. J
Am Stat Assoc 55:708-713

(1962) On the exact product of k random variables.
J Am Stat Assoc 57:54-60

Johnson NL, Kotz S (1969) Discrete distributions. Hough-
ton-Mifflin, Boston

Li CC (1976) First course in population genetics. Boxwood,
Pacific Grove, CA

Mohrenweiser HW, Wurzinger KH, Neel JV (1987) Fre-
quency and distribution of rare electrophoretic mobility
variants in a population ofnewborns in Ann Arbor, Mich-
igan. Ann Hum Genet 51:303-316

MorrisJW, Sanda AI, GlassbergJ (1989) Biostatistical eval-
uation ofevidence from continuous allele frequency distri-
bution deoxyribonucleic acid (DNA) in reference to dis-
puted paternity identity. J Forensic Sci 34:1311-1317

Morton NE (1992) Genetic structure of forensic popula-
tions. Proc Natl Acad Sci USA 89:2256-2560

Mourant AE, Kopec AC, Domaniewska-Sobczak K (1976)
The distribution of the human blood groups and other
polymorphisms, 2d ed. Oxford University Press, Oxford

Nakamura Y, Leppert M, O'Connell P, Wolff R, Holm T,
Culver M, Martin C, et al (1987) Variable number of
tandem repeat (VNTR) markers for human gene map-
ping. Science 235:1616-1622

Nei M, Roychoudhury AK (1982) Genetic relationship and
evolution of human races. Evol Biol 14:1-59

Odelberg SJ, Platke R, EldridgeJR, Ballard L, O'Connell P,
Nakamura Y, Leppert M, et al (1989) Characterization
of eight VNTR loci by agarose gel electrophoresis. Geno-
mics 5:915-924

Rao CR (1973) Linear statistical inference and its applica-
tions. John Wiley, New York

Reed TE (1969) Caucasian genes in American Negroes. Sci-
ence 165:762-768

Risch N, Devlin B (1992) On the probability of matching
DNA fingerprintings. Science 255:717-720

Roberts L (1991) Fight erupts over DNA fingerprinting.
Science 254:1721-1723

Solomon E, Rawlings C (eds) (1991) Human Gene Mapping
11: Eleventh International Workshop on Human Gene
Mapping. Cytogenet Cell Genet 52:1-2000

Steinberg AG, Cook CE (1981) The distribution of human
immunoglobin allotypes. Oxford University Press, Ox-
ford

Tills D, Kopec AC, Tills RE (1983) The distribution of the
human blood groups and other polymorphisms, suppl 1.
Oxford University Press, Oxford

Weir BS (1990) Genetic data analysis. Sinauer, Sunderland,
MA

(1992) Independence of VNTR alleles defined as
fixed bins. Genetics 130:873-887


