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Statistics in a nutshell–the height example

Suppose I wanted to know the average height of all men in

some particular group. I could choose a random sample of 100

random men, and use the sample mean as my estimate.

• If I repeated my actions and drew a different random

sample of 100 men, I would obtain a different estimate.

• Hence, there is uncertainty in my estimate. This uncertainty

can be summarized by reporting my result as a confidence

interval or including a margin of error with my estimate.

• Note: As my sample size increases, I get a more and more

refined estimate and the margin of error will decrease.
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The allele frequency example

• The same thing happens with estimating allele

frequencies–a database corresponds to a sample of alleles.

• If different individuals had been included in the database,

our estimated allele frequencies would have been different.

• Since there is uncertainty in our allele frequency estimates,

there will be uncertainty in quantities that are calculated

using these estimates (e.g. match probabilities).
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The effect of database size on the margin of

error.

Here, I used a true allele frequency of 0.20 to show how

database size and level of confidence effect the margin of error

for an allele frequency at a single locus.

Database Margin of Error Margin of Error
Size for 95% CI for 99% CI

50 0.111 0.146
100 0.078 0.103
500 0.035 0.046

1000 0.025 0.033
5000 0.011 0.015
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A bigger issue...

• People don’t all belong to one homogeneous group.

• Different subpopulations have different allele frequencies.

• Over the next few slides I will give an extreme example to

show how the existence of subpopulations can effect our

estimation of somebody’s uniqueness.
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Logical thought in a world with one population

• Imagine a world where people live in villages, but the heights

of people are pretty much the same in all the villages.

• One day, a villager sees a ten-foot tall woman walking

through town. Since everybody knows that women are

rarely over six foot tall, the villager knows he has seen

something extraordinary–probably the tallest person in the

world.

• Years later, if news comes that a ten foot tall woman

committed a crime, the villager gets to have the pleasure of

telling his family about how that criminal once passed

through their very own village.
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Logical thought in a world with many

subpopulations

• Imagine a world where people live in villages, and the

heights of people are pretty much the same in most

villages, but the people also know that, far up in the

mountains there are some villages with very strange and

different people.

• In this world, when a villager sees the ten foot tall woman,

he has two thoughts—maybe this is the tallest person in

the world, or maybe, way up in the mountains there is a

whole village where the women are ten feet tall.
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• Years later, when news comes that a ten foot tall woman

committed a crime, the villager gets to have the pleasure of

telling his family about how one of those giant women once

passed through the village—and maybe it was even the very

same criminal.
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How this applies to match probabilities...

• A very tall woman is like a rare profile...

• Luckily, we have better information than the villagers in

either of the two worlds. We know that there are many

subpopulations out there, and population geneticists have

learned a lot about how allele frequencies within a

subpopulation might compare to the overall average.

• This is where the “theta correction” comes in. When we

use formulae that include θ, we are taking into account that

the defendant and the perpetrator might both belong to

some subpopulation where allele frequencies might differ

from the allele frequencies we see in the database.

10



More about θ

• The parameter θ is essentially a measure of how different

we think the subpopulation might be from the population

as a whole.

• Values of θ within the European population are usually

estimated to be less than 0.01 at each marker, but, to be a

bit conservative, we usually pretend that θ is known and has

a value of 0.03.

• Higher values of θ indicate that the subpopulation can be

more different from the overall population.
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Proposed methods for dealing with uncertainty

• Confidence Intervals

– Pro: Familiar from opinion polls.

– Con: The probability statement is about the database,

not about the allele frequency (or match probability).

• Bayesian probability intervals / Bayesian credible intervals /

Bayesian highest posterior density regions

– Pro: The probability statement is about the allele

frequency or match probability. “With probability 0.95,

the match probability is between 0.012 and 0.023.”

– Con: Requires the use of a “prior” distribution, which

may or may not have a theoretical justification and may

or may not have a great influence on the result.
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• Just plugging in conservative estimates at every step (e.g.

NRC’s 1992 “ceiling principle”).

– Pro: It’s easy and should give a conservative result.

– Con: Impossible to justify this approach when you are

capable of doing the analysis in another manner that

gets your best estimate and a theoretically justified

margin of error on your estimate. (So don’t use this

approach if you can avoid it).

• The “factor of ten” bounds (from NRC II).

– Pro: Easy.

– Con: As an ad-hoc approach with no theoretical

justification, it gave decent results when just five or six

markers were used. With more markers, a factor of ten

isn’t nearly big enough.
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Where we are so far...

So far, we have talked about the two main sources of variability

in our calculations.

• Sampling variability in the databases

Solution: Attach confidence intervals or some measure of

uncertainty to your estimates.

• Populations are composed of subpopulations which are

difficult to identify or define.

Solution: Always use formulae that include a conservative

correction (θ = 0.03) for this problem or report your results

using a variety of values of θ.
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An Example...

Suppose we have a mixed stain and we have the following two

hypothesis:

Hp : The suspect and an unknown person contributed the

evidence.

Hd : Two unknown people contributed the evidence.

The general approach is to calculate a likelihood ratio that

compares the likelihood of the data (the DNA profile of the

stain) under the two hypotheses.

15



Example, continued...

The likelihood ratio is:

LR =
Pr(Evidence|Hp)

Pr(Evidence|Hd)

• This LR consists of two probabilities, each of which is the

product of single-locus probabilities.

• Statistical theory works well for sums, not products, so we

convert everything to the log scale. So now we work with

the log-likelihood ratio (but we convert everything back to

the original scale when we report it).
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Example, continued...

Then our 95% confidence interval is:

CI = ln(L̂R) ± 1.96
√

Var[ln(L̂R)]

• There are two mysterious quantities:

– L̂R is our best estimate of the likelihood ratio. It comes

from using the estimated allele frequencies from the

database and the known probability equations that

account for subpopulations (see Curran et al. 1999).

– Var[ln(L̂R)] is a tricky thing. It used to be that the

known formulae for this quantity all assumed that θ = 0.
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Luckily, just recently, Gary Beecham, a PhD student at North

Carolina State University, worked out appropriate equations for

Var[ln(L̂R)].

• The DNAMIX-3 computer program has been updated to

include these new formulae.

• The program is available at:

http://bioinformatics.ncsu.edu/brcwebsite/software_BRC.php

• Calculations for both single-contributor and mixed stains

are possible with this program.
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Example, continued...

To look at the effects of θ on likelihood ratios and confidence

intervals, we looked at the Caucasian database for the CODIS

loci published by Budowle et al. (1999).

In the first graph, we consider the two-contributor stain case

where profile contains the three most common alleles at all

thirteen loci.

The second plot shows a similar situation except that the

profile contains the three least common alleles at each locus.
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Graph of ln(LR) for a two-contributor mixture

with common alleles
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Figure 1: Ln(LR) and bounds for common evidence stain
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Graph of ln(LR) for a two-contributor mixture

with rare alleles
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Figure 1: Ln(LR) and bounds for rare evidence stain
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Conclusions

• It is important to use statistical techniques that recognize

that allele frequencies are not known without error.

• It is critical that you take population structure into account.

• Methodology exists that accounts for both of these sources

of uncertainty.
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