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ABSTRACT: The likelihood ratio approach for DNA typing in criminal cases is described. 
It is shown how this approach uses both the sizes and pattern of discrepancies between the 
crime scene profile of fragment lengths and the suspect profile for quantifying the strength 
of the evidence. In contrast to the current match-binning approach, it avoids an initial 
decision about whether the two profiles match. Likelihood ratios for pairs of profiles that 
meet the published statistical criteria for a match show a wide range of values including 
some that indicate the evidence is strongly against identity. 
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A likelihood ratio approach to the statistical presentation of DNA fragment length 
evidence differs from the approach referred to as match-binning in the manner in which 
it quantifies the comparison between the profile of DNA fragment lengths obtained from 
a sample at the crime scene and that obtained from a suspect. Unique to match-binning 
is an initial decision about whether the profiles match. Under match-binning a match is 
declared when the two profiles reveal no significant discrepancies. A chance-matching 
probability is then determined from the population frequency of fragment lengths that 
fall in the matching interval or bin. Although expert judgement is required for declaring 
a match, statistical-matching criteria have been published that require that each pair of 
fragment lengths in the two profiles differ by less than four standard errors of measure- 
ment [1] or 2.5% of the fragment lengths [2]. A more stringent three standard error 
criteria has also been reported [3]. Recent debates over the statistical validity of match- 
binning have focused upon the estimation of the probability of matching profiles from 
two different people [1,4,5]. A committee of the National Academy of Sciences reported 
on this and other issues and proposed a conservative method for calculating these chance- 
matching probabilities [6]. A more important statistical issue is whether it is sufficient 
to provide conservative, but convincing, chance-matching probabilities after a match has 
been declared; or better to use the sizes and pattern of discrepancies between two profiles 
in characterizing the strength of the evidence. 
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The likelihood ratio approach as an alternative to match-binning does use the sizes 
and pattern of  discrepancies to quantify the strength of  the evidence. A likelihood ratio 
indicates the evidence is stronger when a pair of profiles match closely than when a pair 
barely meet statistical-matching criteria. Because of  the reported positive correlation of  
fragment length measurement errors of the alleles, a likelihood ratio also indicates the 
evidence is stronger when a pair of  profiles exhibit differences of the same sign for the 
alleles than when a pair exhibit differences of  opposite sign. Under match-binning, the 
sizes and pattern of discrepancies is considered by experts in the match decision, but the 
closeness of  the match is not quantified. 

For DNA typing in criminal cases, the numerator of the likelihood ratio is the likeli- 
hood of a model that assumes the suspect and crime sample fragment length profiles are 
identical, and the denominator is the likelihood of a model that does not assume identical 
profiles. The models logically follow from consideration of the distribution of errors in 
measuring fragment lengths and from the distribution of fragment lengths in target pop- 
ulations. Likelihood ratio approaches for DNA typing in criminal cases have been pro- 
posed by others [7-12] and have long been suggested for other forensic evidence [13]. 
For DNA typing in paternity cases, likelihood ratios have been referred to as the paternity 
index [14,15]. We provide a relatively simple likelihood ratio equation that considers the 
reported complexities of the fragment length measurement error distribution in quanti- 
fying the strength of the evidence. Application of  this equation reveals the importance 
of the sizes and pattern of discrepancies between profiles. We also show that when two 
profiles are not too close, but still meet a four-standard-error statistical-matching criteria, 
the likelihood ratio approach indicates that the evidence is strongly against identity. With 
the use of the likelihood ratio approach, it becomes more apparent that accurate esti- 
mation of the fragment length measurement error distribution [2,3,8,16] and expertise in 
the various conditions that keep it under control [17-19] are at least as critical as the 
determination of chance-matching probabilities [1,4-6]. 

A Likelihood Ratio for DNA Typing 

A simple measurement error model posits a true fragment length T as the expected 
value of the measured values X, such that X = T + E, where E represents measurement 
error. A coefficient of variation of just 0.6% of the fragment length has been frequently 
reported for Lifecodes methodology and was based on comparisons of duplicate, uncon- 
taminated samples [1,3,7], but the particular value is not important to our presentation. 
Because of  the numerous conditions that contribute to the small variance of  E and from 
the results of empirical studies [8,16], it seems reasonable to assume E to be distributed 
normally with mean zero and variance c2T ~, where c is the coefficient of variation. For 
the two fragment length measurements (one for each allele) obtained from each probe 
(locus), we use X to denote the observed shorter allele and Y to denote the longer allele; 
where Y = U + F, U is the true fragment length of  the longer allele, and F is the 
measurement error variable assumed normal with mean zero and variance cZU 2. Because 
of indications of high positive correlations between errors E and F when T and U are 
close, we adopted a model that allows them to be dependent. As we show below, such 
correlations are a critical component in the modeling and the resulting likelihood ratios. 
Error correlations ranging from 0.25 to 0.9 have been reported [7,8,12], and functions 
for the error correlations that depend on the difference between the two alleles have 
been suggested [9,12]. The correlations, as one would expect, approach one as the dif- 
ference between alleles approaches zero. 

The density function that can be estimated by identifying a sample of individuals from 
some target population, sorting within each pair of alleles a short and long measured 
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length, and smoothing bivariate frequencies can be written in terms of the measurement 
model, 

h(x,y)=ffg(t,u)+(x, ytt,u) dt& (1) 

where g(t,u) is the bivariate density of  the true fragment lengths (t,u), and ?p(x,y ~ t,u) is 
the conditional (error) density of the observed fragment lengths (x,y) for a given t and 
u. The symbol ~b refers to the bivariate normal error assumption [(X,Y I t,u) is normal 
with means t and u; variances c2t 2 and cZu 2, and covariance pc2ut, where p is the cor- 
relation of the error variables E and F and is a function of the difference between t and 
u]. 

Data on three probes (D2S44, D17S79, and D14S13) were made available to us from 
Lifecodes Corporation. We found that across the three probes and across three racial 
groups the correlations between X and Y for each probe ranged between 0.34 and 0.52. 
The intraclass correlation which ignore order were lower than these (0.01 to 0.18). Be- 
cause of the size of these correlations, we used a bivariate density for the T and U alleles 
that allowed them to be dependent. Therefore, Hardy-Weinberg Equilibrium, which has 
been a source of criticism in many previous approaches, is not assumed in our model 
[20]. However, there is empirical evidence that the Hardy-Weinberg assumption yields 
accurate statistics [1,9]. 

When the suspect is the perpetrator the DNA fragments from the suspect and crime 
samples are expected to be identical lengths. For a single probe, therefore, the observed 
shorter fragment lengths from the two samples are written in terms of a common T, 
2(, = T + Es and Xp = T + Ep, where s refers to the suspect sample and p the crime 
sample. The error variables E, and Ep are assumed independent, because they are from 
different samples and are typically measured in separate lanes. Similarly, for the pair of 
longer fragment lengths with common true length, we write, Y, = U + Fs, and Yp = U 
+ Fp, where again Fs and Fp are assumed independent. The likelihood that a common 
T and U gave rise to the four observations x,, xp, y,, and yp is simply the density of these 
observations given a common T and U. 

When the suspect is not the perpetrator, the true fragment lengths from the two samples 
are not expected to be identical, that is, the observed fragment lengths are not written 
with a common T and U, Xs = T~ + E,, Xp = Tp + Ep, Y~ = U, + F,, and Yp = Up + Fp. 
The likelihood of the second measurement model as the explanation for the four obser- 
vations is the density of their values without the assumption that Ts = T r and Us = Up. 

The likelihood ratio (LR) is then written as 

L R = f ( & ' x p ' y " y p l s = p )  
f(x, ,  xp, y,, yp ] S ;d p )  ' 

(2) 

where f denotes the two density functions, s = p denotes identical true fragment lengths 
underlying the suspect and crime samples, and s ~ p denotes no such assumption. 

The greater the value of the LR (above 1), the more strongly the evidence favors the 
identity (numerator) model. Conversely, the lower the value (below 1), the more strongly 
the evidence favors the non-identity (denominator) model. Some labeling scheme seems 
the easiest method for conveying the meaning of an LR value to lay persons. Evett et 
al. [10] provide a scheme in which an LR over 1000 is labeled: " the evidence very 
strongly supports" identity. A labeling scheme in combination with empirical studies of 
its inaccuracies could be the foundation of the statistical presentation in a courtroom. 
For example, if the LR were greater than 1000, the above label could be followed by a 
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discussion of  the proportion of LRs over 1000 that have been obtained from comparing 
the profiles of  two different people in a large data base. Presumably, such large values 
for the LR would almost never arise from two different people (excluding monozygotic 
twins) even in the largest data bases. For example, using just two probes to compare 
profiles of different persons, Evett et al. [12] found that only one in one-half million 
comparisons produced an LR greater than 1000. They also found that, with just two 
probes, 98% of LR values exceeded 10 000 when based on duplicate samples from the 
same person. 

A Like l ihood  f o r  the Identi ty Mode l  in Closed  F o r m  

The density of  x,, xp, y,, and yp for one locus given identical true fragment lengths 
(common T,U) for the two samples is, 

f(x~,xp,y,,yp l s = p ) =  f f g(t,u) + (x~,y, l t,u) r (Xp, yv l t,u) dt  du, (3) 

where again g(t,u) is the population bivariate density of the true short and long fragment 
lengths. When measurement error variance is relatively small as it is here, a Taylor series 
approximation has been found to yield accurate results for the integration in Eq 3 [21,22]. 
The main part of the approximation involves the bivariate normal density of  the errors 
in the observations and the bivariate density h(x,y) of short and long fragment lengths 
observed on a target population, 

flx,,ys, G, yp I s = p) 

{ [ - - - u.- 1 1 (x~ Xp; 2 2p(x~ xe)(y, Ye) + 
_ 4 ~ r c 2 ~ ' ] ~ 2  e 4c2(1_p2) ~ ~2 ~ y2 ] j  

• h(~,y-) 1 - c  2 1 + ~ p  - c [ - - - ~ 2 +  O~ y (4) 

OZh(Y,y~y 2 02h(J,y-)~ ] }  02h(Y,y - ) y ? + _  + - -  ~ , 
+ O ~  4 Oy 2 4 O~Oy 2 

where x = (xs + Xp)/2 and y = (y~ + yp)/2 serve as approximations for t and u, c 4 terms 
have been eliminated and p is a function of x - y. The first term in braces for Eq 4 
indicates what one would expect: the likelihood that the true fragment lengths are iden- 
tical (s = p) depends on the size of the discrepancy between the matched pairs of 
fragment lengths. In other words, as the values of (xs - Xp) 2 and (y~ - yp)2 increase, the 
likelihood decreases. For a given t, X,  - Xp is distributed normally with a mean of zero 
and 2cZt 2 is the variance. 

With p positive, as the research has shown, differences of the same sign for both 
alleles (xs - Xp and Ys - Yp are both positive or both negative) yield larger values for 
the likelihood of the identity model, than when the differences are of opposite sign. 
Therefore, both the size of  the two differences and their pattern affects the likelihood of  
the identity model. 

When xs = ys and xp = yp (both samples appear homozygous), the bivariate normal 
density can be replaced by the univariate normal density of x~ - xp which has mean zero 
and approximate variance 2c2U [9,12]. Berry et al. [8] consider other more complex 
problems with single banded profiles. 

The error of  the approximation in Eq 4 was under 1% across a wide range of values 
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for a bivariate normal g(t,u). The likelihood ratio equations of Berry et al. [8] and Devlin 
et al. [9] differ from our approximation in the way the bivariate density of true fragment 
lengths g(t,u) is estimated. Their equations are similar to ours because all three assume 
bivariate normal measurement error. We smooth the bivariate density of the observables 
[h(x,y)] first and then indirectly correct for the natural smoothing that occurs because of 
measurement error. This avoids the criticism Devlin et al. [9] made against the smoothing 
technique of Berry et al. [8], which may lead to oversmoothing spikes in the density of 
true fragment lengths. Evett et al. [10-12] provided an approximation equation similar 
to ours that does not consider the integration in Eq 3. As a result their equation does 
not include the correction factors in the second term in braces. We have, however, found 
our corrections to be mainly small and so our equations provide some justification for 
their simpler approximation. Evett et al. [12] also provide a detailed empirical analysis 
of error variance and correlation. The value of Eq 4 is, therefore, its avoidance of the 
numerical integration in Berry et al. [8] and Devlin et al. [9] by an accurate approxi- 
mation. Both our equations and those of Berry et al. [8] allow for dependence between 
alleles. 

The Likelihood for the Non-identity Model 

Under this model, true fragment lengths for the suspect and crime-scene samples are 
independent (Ts, U, independent of Tp, Up), and the density of the four observations can 
be expressed as: 

f(x~,xp,ys,yp l S ~ p ) =  f f  g(t,,u,)qb(x,,ys I t ,  u,)dt, du~ 

= h(x,y~), h(x~,y~), 

where the simple form involving the product of the two observable bivariate densities, 
one for the suspect sample and one for the crime sample, follows from Eq 1 and the 
independence assumption. Measurement variation across gels contributes to observed 
variation across a population's fragment lengths. If this is substantial, a correction in 
h(x,y) should be used. 

The controversy over the "correct" sub-population [1,4-6] for determining chance- 
matching probabilities is relevant to the estimation of h(x,y) in Eq 4 and h(x,,y~) and 
h(xp,yp) in Eq 5. For the common situation in which the sample at the crime scene is 
compared to the suspect's DNA, an estimate of h(x,y) in Eq 4 (numerator of the LR) 
and h(x,,ys) in Eq 5 (denominator of the LR) could be based on any target population 
with which the suspect might be identified. This is because the numerator model assumes 
identity of the suspect's DNA and that found at the crime scene. An estimate of 
h(xp,ye) in Eq 5 could be based on any target population with which the perpetrator might 
be identified regardless of the suspect, because the model for this equation assumes 
independence of the suspect and perpetrator. A sensitivity analysis that calculates LRs 
based on various target populations seems indispensable. For the situation in which the 
crime sample is of the victim's DNA and is to be matched with stains found on the 
suspect, similar reasoning would be used. 

Likelihood Ratio for the Full Profile of Fragment Lengths 

From the Lifecodes' data made available to us, correlations of  fragment lengths for 
the three probes (on three different chromosomes) across three races were all near zero. 
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From these correlations and past research [2,3], it seemed appropriate to assume that 
true fragment lengths across the three probes are independent. Although our LR does 
not require it, we also assumed independence of errors across probes for our calculations. 
(See Evett et al. [12] who use across probe error correlations in their calculations.) Given 
these assumptions, the product of the likelihood ratios obtained from each probe is the 
likelihood ratio for the three probes taken together. 

Likelihood Ratios for Selected Profiles 

The Lifecodes' data made available to us consisted of short and long fragment length 
measurements for the three loci D2S44, D17S79, and D14S13. The bivariate densities, 
h(x,y), for the three loci were smoothed using a kernel-type method referred to as average 
shifted histograms [23]. Figure 1 is the estimated density for D2S44 and is based on a 
Caucasian data set (n = 1529). Using such smoothed estimates for the h(x,y), we cal- 
culated likelihood ratios for selected profiles in order to reveal their sensitivity to the 
size and pattern of discrepancies between profiles. 

Table 1 provides likelihood ratios for four different degrees of discrepancy between 
the two fragment length profiles. Observations were chosen so that the bivariate densities 
of the average of the fragment lengths for each probe were mid-way between the highest 
density and zero in the Caucasian data set. The average value of the two alleles for 
D2S44 were 10.82 and 12.67 kilobases, for D17S79 they were 3.39 and 3.70, and for 
D14S13 they were 5.22 and 5.64. The first row of Table 1, labeled with a zero, is for 
the case when there is no discrepancy between the observed fragment lengths from the 
two samples (xs = xp, y~ = yp for each of the three probes). With zero discrepancy, the 
value of the likelihood ratio for D2S44 is 99, for D17S79 it is 48, and for D14S13 it is 
236. The product of these indicates that when the suspect and crime samples' fragment 
length measurements are the same across the three probes, the likelihood for the identity 
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FIG. 1--Smoothed Bivariate Density, h(x,y), for D2S44 based on 1529 Caucasians. 
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TABLE 1--Likelihood ratios as a function o f  four  discrepancy sizes for  each o f  three probes 
with p = O. a 

Probe 
# of Std. Error Diffs. 
between xs and xp and D2S44 D 17S79 D 14S 13 Product 
y, and yp (density = 0.17) (density = 3.7) (density = 0.32) of LRs 

0 99. 48. 236. 1.1 • 106 
1 62. 29. 142. 2.6 • 105 
2 16. 9.2 33. 4858. 
3 1.3 .45 2.7 1.6 
4 .04 .02 .08 .000 06 

~x,--y observations were chosen for each probe which had a bivariate density 1/2 as large as the 
highest density. 

model  is one-mil l ion times greater than the l ikelihood for the non-identity model.  The 
next two rows provide LRs for discrepancies of  one and two standard errors of  mea- 
surement, respectively. Note that the LRs for each probe in these two rows are consid- 
erably reduced, but their products across the probes are still large. When  the difference 
between the observed fragment lengths of  the suspect and the crime samples are three 
or four standard errors of  measurement,  the evidence is inconclusive at best. 

The LRs in Table 1 were calculated with p = 0. They are provided to isolate the effect 
of  the size of  the discrepancies f rom the pattern of  the discrepancies. When  p = 0, 
differences o f  the same or opposite sign for the two alleles yield essentially the same 
LR. Table 2 provides LRs with p fixed to .9 to reveal  the effect of  the high error 
correlations that have been reported [7-9 ,12] .  The same means (x ,y)  were used as those 
used for Table 1. Table 2 makes a distinction between two possible patterns. For  ex- 
ample, the first row of  the table provides the LRs when  x, - xp and y, - yp are both 
posit ive and equal to one standard error of  measurement  (labeled C for consistent pat- 
tern). Note  that the LRs in this row are higher than the corresponding LRs in Table 1 
for a one standard error difference. This is true because deviations of  the same size and 
sign (band shift) are more likely with highly correlated measurement  error (p = 0.9) than 
with p = 0. The effect of  the opposite (inconsistent) pattern is apparent in the next  row. 
In this row, the difference between x, and Xp is - 1  standard error and the difference 
be tween y, and yp is 1 standard error. The much lower LRs in the second row are 

TABLE 2--Likel ihood ratios with p = 0.9 as a function o f  two patterns and four  sizes o f  
discrepancies. 

Size in Std. Err. Probe 

Pattern x, - x~ y, - yp D2S44 D17S79 D14S13 

C a 1 1 180 83 415 
I a - 1  1 1.7 0.82 3.2 
C 2 2 87 34 192 
I - 2  2 2 X 10 -6 2 X 10 -4 1 X 10 -6 

C 3 3 23 9.3 51 
I - 3  3 9 X 10 -17 1 X 10 -17 1 X 10 -17 
C 4 4 3.9 1.6 8.2 
I - 4  4 4 X 10 ~32 2 • 10 -32 8 )< 10 -33 

I -0 .5  0.5 67 33 154 

aC is a pattern that is consistent with the positive Correlation of errors; I is a pattern that is 
inconsistent. 
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explained by a small likelihood of observing differences of opposite sign when p = 0.9. 
In other words, these differences are inconsistent with the phenomena of band shifting 
and so is inconsistent with the identity model. The difference between the LRs for the 
2, 3, and 4 standard error differences are much more pronounced and reveal the critical 
role played by the pattern of  differences. The last row in Table 2 shows that when the 
difference is quite small (0.5 standard errors) but inconsistent, relatively large LR values 
are still obtained. Note, however, that these LR values are similar to the ones in row 
three for the two-standard-error discrepancies with a consistent pattern. 

For the profiles in Tables 1 and 2, chance-matching probabilities were provided to us 
by Lifecodes Corporation. They were based on the three-standard-error statistical-match- 
ing criteria and are as follows: For the D2S44 probe the chance-matching probability 
for both alleles based on the Caucasian population is 0.04, for D17S79 it is 0.04, and 
for D14S13 it is .018, yielding an overall chance-matching probability of 3 • 10 -5. For 
a three standard error difference between profiles, the product of the LRs in Table 1 was 
1.6 implying such evidence is inconclusive. For all the opposite sign patterns in Table 
2, the LRs indicate the evidence is inconclusive or strongly against identity. We expect 
that experts would make decisions consistent with the values of the LRs, that is, profiles 
that differ by three or four standard errors for every fragment length (1.8% to 2.4% of 
the fragment lengths) and that do not show a consistent band-shifting pattern would be 
considered inconclusive or against identity by an expert. Thus, a statistical-matching 
criteria of three- or four-standard errors breaks down when applied in a sterile manner. 
A dilemma is created by the match-binning approach, which is that chance-matching 
probabilities that are calculated by assuming strict adherence to the statistical matching 
criteria, but experts can not rely on these criteria as made obvious in our tables by the 
wide range of LRs from profiles that meet these criteria. The low values of  the LR for 
three- and four-standard-error differences is a warning against using more liberal (inclu- 
sive) statistical-matching criteria. 

It is difficult to design a truly generalizable study that compares the accuracy of LR 
and match-binning approaches. Studies based on a comparison of statistical matching 
(rather than expert matching) to likelihood ratios have shown that likelihood ratios are 
more accurate in correctly classifying identical and non-identical profiles. This is as 
expected, because the information in the sizes and pattern of discrepancies is utilized by 
the likelihood ratio approach, but ignored by a sterile statistical-matching approach. 

Estimation Error 

The likelihood ratios are subject to sampling error. It is appropriate to provide a range 
of possible values as a function of sampling error in the estimation of h(x,y) as well as 
the measurement error parameters. At the least, the lower limit of such an interval should 
be made known. For such a complex statistic like the LR, intervals based on the bootstrap 
procedure could be used [24]. Results in Devlin et al. indicate that their LRs are relatively 
accurate for a population sample size of  just 125 [9]. 

The value for the measurement error variance that was used here (.6%) is based on 
Lifecodes methods and uncontaminated samples. Such an estimate may be specific to 
their studies, and it seems clear that each laborgtory needs to determine its own error 
variance on a continuing basis. The influence of the correlation of error (P) on deter- 
mining the likelihood of distinct patterns of discrepancies, and the possibility of bias and 
non-normal errors (because of degradation of samples) suggest that a continuing inves- 
tigation of the distribution of error is needed and that the use of the likelihood ratio 
without expert judgement is to be avoided. Thus far, research that has tested the effects 
of various conditions on DNA samples has shown that readable samples are consistent 
with untreated controls and that the error variance is not increased [17-19]. 
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Conclusion 

The likelihood ratio approach does not require an initial decision about whether or 
not two profiles match. Instead, it quantifies the strength of the evidence in favor of 
identity by its sensitivity to the sizes and pattern of discrepancies between profiles. The 
wide range of likelihood ratios reported in Tables 1 and 2 suggest that this sensitivity is 
most critical when the two profiles approach the limits of the published statistical match- 
ing criteria. 

The theoretical foundation of likelihood ratios is somewhat complex for jurors, but 
their numerical values can be labelled with broad descriptions such as "very  strong 
evidence of identity." Descriptions should be followed by reports on the proportion of 
times such strong results have been obtained from two different persons in large data- 
bases. The effects on the value of the likelihood ratio of choices for target population 
and assumptions about the measurement error distribution should also be provided. 
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