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When evaluating the strength of DNA evidence for proving that
two samples have a common source, one must consider two fac-
tors. One factor is the probability of a coincidental match (some-
times called the random match probability). A coincidental match
occurs when two different people have the same DNA profile. The
second factor is the probability of a false positive. A false positive
(as we use that term here) occurs when a laboratory erroneously 
reports a DNA match between two samples that actually have dif-
ferent profiles. A false positive might occur due to error in the col-
lection or handling of samples, misinterpretation of test results, or
incorrect reporting of test results (1–3). Either a coincidental match
or a false positive could cause a laboratory to report a DNA match
between samples from different people. Consequently, one must
consider both the random match probability and the false positive
probability in order to make a fair evaluation of DNA evidence.

Although both factors affect the value of a reported match,
forensic scientists and courts have been far more concerned about
having a solid scientific basis for determining random match prob-
abilities than for determining false positive probabilities. Efforts to
establish rates of laboratory error through empirical study have, to
date, received relatively little attention compared to efforts to es-
tablish the frequency (and hence the random match probability) of
DNA profiles (4). When DNA evidence is presented in court, juries
typically receive statistical data on the probability of a coincidental
match (5,6). For example, a jury might be told “that the probability
of selecting an unrelated individual at random from the population

having a DNA profile matching [the defendant’s] [is] approxi-
mately 1 in 351,200 blacks and approximately 1 in 572,000 Cau-
casians” (7). But juries rarely hear statistics on the frequency or
probability of false positives (5,6).

Courts in many jurisdictions refuse even to admit evidence of a
DNA match unless it is accompanied by statistical estimates of the
random match probability, and they require that these statistics be
computed in a manner that is valid and generally accepted by the
scientific community (6). By contrast, no court has rejected DNA
evidence for lack of valid, scientifically accepted data on the prob-
ability of a false positive (5,6). It is considered essential to know,
with a high degree of scientific certainty, whether the frequency of
random matches is 1 in 1,000, 1 in 10,000, or one in one million,
but unnecessary to have comparable estimates on the frequency of
false positives.

Why are the two possible sources of error in DNA testing treated
so differently? In particular, why is it considered essential to have
valid, scientifically accepted estimates of the random match prob-
ability but not essential to have valid, scientifically accepted esti-
mates of the false positive probability?

In this article we will consider several possible explanations for
the difference. We will argue that it arises, in part, from failure to
appreciate the importance of the false positive probability for de-
termining the value of DNA evidence. We will present a frame-
work for considering the role that error may play in determining the
probative value of forensic DNA evidence. We will show that even
a small false positive probability can, in some circumstances, be
highly significant, and therefore that having accurate estimates the
false positive probabilities can be crucial for assessing the value of
DNA evidence.

Errors Happen

When DNA evidence was first introduced, a number of experts
testified that false positives are impossible in DNA testing (6,8).
This claim is now broadly recognized as wrong in principle
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(1,9–12), and it has repeatedly proven wrong in practice (3,13,14).
But it has been repeated frequently, without skepticism, in appel-
late court opinions (6,8).

Why did experts offer this questionable testimony? One com-
mentator has suggested that avid proponents of DNA evidence
sought to allay judicial concerns about the potential for error by en-
gaging in “a sinister semantic game” (8). They were able to deny
that a DNA test could produce an error by excluding consideration
of human error in administering or interpreting the test. Sinister or
not, it is misleading to exclude considerations of human error in
DNA testing when humans are necessarily involved in the admin-
istration and interpretation of DNA tests. For those who must eval-
uate DNA evidence, it makes little difference what causes a false
match; what matters is how often false matches might be expected
(9,15).

False positives have occurred in proficiency tests (2,3,11,13,16)
and in actual cases (14,17). For example, the Philadelphia City
Crime Laboratory recently admitted that it had accidentally
switched the reference samples of the defendant and victim in a
rape case. The error led the laboratory to issue a report that mistak-
enly stated that the defendant was a potential contributor of what
the analysts took to be “seminal stains” on the victim’s clothing
(18). The report also stated that the defendant’s profile was “in-
cluded” in a mixed sample taken from vaginal swabs. After the
sample switch came to light, the laboratory reassessed the evidence
and concluded that the “seminal stains” were actually bloodstains
that matched the victim’s DNA profile and that the defendant was
excluded as a potential contributor to the vaginal sample (19).

In 1995, Cellmark Diagnostics admitted that a similar sample-
switch error had caused it to report, incorrectly, that a rape defen-
dant’s DNA profile matched DNA found in vaginal aspirate from a
rape victim. After the error came to light during the defendant’s
trial, Cellmark issued a revised report that stated that the vaginal
sample matched the victim’s own DNA profile and that the defen-
dant was excluded as a potential donor (20).

False positives can also arise due to misinterpretation of test re-
sults. One such error led to the false conviction of Timothy Durham
(14,17). In 1993, a Tulsa, Oklahoma jury convicted Durham of the
rape of an eleven-year-old girl. He was sentenced to 3000 years in
prison. The prosecution presented three pieces of evidence against
him: the young victim’s eyewitness identification, testimony that
Durham’s hair was similar (in microscopic examination) to hair
found at the crime scene, and a DNA test (DQ-alpha) that report-
edly showed that Durham’s genotype matched that of the semen
donor. Durham presented eleven witnesses who placed him in an-
other state at the time of the crime, but the jury rejected his alibi de-
fense. Fortunately for Durham, post-conviction DNA testing
showed that he did not share the DQ-alpha genotype found in the
semen. He was also excluded at several other genetic loci in multi-
ple tests. The initial DNA test result that helped convict Durham
was proven to have been a false positive. The error arose from mis-
interpretation. The laboratory had failed to completely separate
male from female DNA during differential extraction of the semen
stain. The victim’s alleles, when combined with those of the true
rapist, produced an apparent genotype that matched Durham’s. The
laboratory mistook this mixed profile for a single source result, and
thereby falsely incriminated an innocent man. Durham was re-
leased from prison in 1997 (14).

Although experience has shown that false positives can occur,
the rate at which they occur is difficult to estimate on the basis of
existing data. Most laboratories participate in periodic proficiency
tests, which can cast some light on the potential for error. European

forensic laboratories have carried out collaborative exercises in-
volving analysis of stains from known sources (21–26). However,
this work is designed more to test the uniformity of DNA test re-
sults among laboratories using the same protocol than to determine
the rate of errors. In the United States, TWGDAM guidelines call
for each analyst to take two proficiency tests each year (27), and
proficiency testing is a requirement for laboratory certification un-
der the program administered by ASCLAD-LAB (28). However,
these tests generally are not well designed for estimating the rate of
false positives. The tests typically are not blind (i.e., the analysts
know they are being tested), they involve limited numbers of sam-
ples, and the samples may be easier to analyze than those encoun-
tered in routine casework.

In 1992, a report of the National Research Council called for
more extensive proficiency testing, declaring that “laboratory error
rates must be continually estimated in blind proficiency testing and
must be disclosed to juries” (1). The NRC called for external, blind
proficiency tests “that are truly representative of case materials
(with respect to sample quality, accompanying description, etc.).”
Thereafter, the Federal DNA Identification Act of 1994 required
the director of the National Institute of Justice (NIJ) to report to
Congress on the feasibility of establishing an external blind profi-
ciency testing program for DNA laboratories. But the move toward
external blind proficiency testing lost momentum when the NIJ di-
rector raised a number of practical concerns. It was dealt another
blow by the 1996 report of the National Research Council, which
downplayed the need for proficiency testing. The 1996 NRC report
suggested that the problem of laboratory error be addressed
through a variety of means and concluded that the best way to safe-
guard against error is to allow re-testing of samples (28).

Do We Need Scientifically Valid Estimates of Laboratory
Error Rates?

Although re-testing is undoubtedly helpful, it does not eliminate
the need to consider error when evaluating DNA evidence. Re-
testing cannot catch every error. A critical error, such as cross-
contamination of samples, may occur before samples can be split
for duplicate testing (29,30). Some errors, such as the error of in-
terpretation that falsely incriminated Timothy Durham, may sim-
ply be repeated on re-test. And re-testing cannot be done in every
case because critical samples are sometimes exhausted by the first
test. Re-testing may reduce the likelihood of a false positive, but no
one claims that it can eliminate false positives. Hence, the avail-
ability of re-testing does not by itself explain why less importance
is placed on having accurate estimates of false positive probabili-
ties than random match probabilities.

Another explanation, suggested by some court opinions, is that
jurors have less need of statistical estimates when evaluating the
probability of a false positive because they can appreciate the po-
tential for false positives based on common sense and experience.
“Shortcomings such as mislabeling, mixing the wrong ingredients,
or failing to follow routine precautions against contamination may
well be amenable to evaluation by jurors without the assistance of
expert testimony” (31). By contrast, there is nothing in jurors’ ev-
eryday experience that would allow them to estimate the probabil-
ity of a coincidental match between two DNA profiles; hence, ex-
perts must present statistical estimates of the random match
probability.

The problem with this argument is that it equates the ability to
appreciate the potential for a laboratory error with the ability to ac-
curately estimate the probability of an error. It is not clear that the
latter will necessarily follow from the former. Even if jurors un-



derstand the various ways in which a false positive might occur, it
requires a leap of faith to conclude that they will therefore be able
to determine accurately, based on common sense, whether, for ex-
ample, the probability of such an error in a particular case is 1 in
100 or 1 in 10,000. In the absence of solid empirical data there is
considerable disagreement among experts about what the rate of
laboratory error might be (3,8,13,15,16). To rely on jurors’ com-
mon sense to produce accurate estimates when experts cannot
agree seems unduly optimistic.

It might be argued, however, that jurors do not need precise esti-
mates of the false positive probability—they need only know that
the probability of error is low enough to make a false positive un-
likely in the case at hand. If, as commentators have suggested, the
rate of false positives is between 1 in 100 and 1 in 1000, or even less
(3,8,12,13,16), then one might argue that the jury can safely rule out
the prospect that the reported match in their case is due to error and
can proceed to consider the probability of a coincidental match. For
reasons we will explain more fully below, this argument is falla-
cious and profoundly misleading. The core of the fallacy is the er-
roneous assumption that the false positive probability, which is the
probability that a match would be reported between two samples
that do not match, is equal to the probability that a false match was
reported in a particular case. As we will explain below, the proba-
bility that a reported match occurred due to error in a particular case
can be much higher, or lower, than the false positive probability.

How the Potential for Error Affects the Value of 
DNA Evidence

We now present a framework for considering the role that error
may play in determining the value of DNA evidence. Our approach
relies on Bayes’ theorem, a basic principle of logic. Bayes’ theo-
rem indicates how a rational evaluator should adjust a probability
assessment in light of new evidence (32–34). Our analysis shows
how the probability of a false positive should influence a rational
evaluator’s belief in the proposition that a particular individual is
the source of a biological specimen. We use Bayes’ theorem here
solely to illustrate the logical connection between the false positive
rate and the value of DNA evidence. We do not address the sepa-
rate issue of whether Bayes’ theorem should be used to explain the
value of DNA evidence to juries.

Suppose that a rational evaluator is considering whether a bio-
logical specimen could have come from a particular suspect. The
evaluator must assess the probability of two alternative proposi-
tions:

S: the specimen came from a suspect;
S�: the specimen did not come from a suspect.

The evidence to be evaluated is a forensic scientist’s report of a
DNA match between the suspect’s profile and the profile of the
sample. We will call the report of a match R. Under the conven-
tional expression of Bayes’ theorem:
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Bayes’ theorem describes the relationship between three compo-
nents: the prior odds, the posterior odds, and the likelihood ratio.
The term to the immediate right of the equal sign is the prior odds,
which reflect the evaluator’s assessment of the odds that a proposi-
tion is true before the receipt of new evidence. The term to the left
of the equal sign is the posterior odds, which reflect the evaluator’s
belief in the odds that the proposition is true after receipt of new ev-

idence. The remaining term, to the right of the multiplication sign,
is the likelihood ratio. It specifies the evaluator’s belief in the rela-
tive probability that the new evidence would arise if the proposition
is true and if it is not true. Bayes’ theorem specifies that the poste-
rior odds of a proposition equal the prior odds multiplied by the
likelihood ratio.

Bayes’ theorem can be used to show the effect that DNA evi-
dence should have on belief in the propositions S and S�. Suppose,
for example, that the evaluator initially (before considering the
DNA evidence) thinks there is a 20% chance that the suspect is the
source of a specimen. In terms of Eq 1, P(S) � 0.20 and P(S�) =
0.80. Therefore, the prior odds would be 0.25 (often expressed as
1:4 odds). Suppose further that the evaluator thinks the match is
certain to be reported if the suspect was the source of the specimen,
hence P(R  S) = 1.00, and the evaluator thinks that there is only
one chance in 1000 that a match would be reported if the suspect
was not the source of the specimen, hence P(R  S�) = 0.001. Ac-
cordingly, the likelihood ratio is 1.00/0.001 = 1000. To determine
the posterior odds, one simply multiplies the prior odds by the like-
lihood ratio; hence the posterior odds should be 0.25 � 1000 = 250.
In other words, the evaluator should now believe that proposition S
is 250 times more likely than proposition S�.

The conclusion can be restated as a probability by simply con-
verting the posterior odds to a probability using the formula: Prob-
ability � Odds/(Odds � 1). Thus, one can say that the evaluator
should now believe the probability that the suspect is the source of
the specimen is 250/251 = 0.996. In other words, if the evaluator
believes that the DNA evidence is 1000 times more likely to arise
under S than under S�, then the evaluator should revise his estimated
probability that the suspect is the source from 0.20 to 0.996 after re-
ceipt of the DNA evidence.

In the conventional expression of Bayes’ theorem, the likelihood
ratio takes into account all variables that affect the value of the ev-
idence. The likelihood ratio for a reported DNA match is affected
by both the probability of a random match and the probability of a
false positive, because both factors contribute to the denominator
of the likelihood ratio, P(R  S�). In order to assess the relative im-
pact of the random match probability (RMP) and the false positive
probability (FPP) on the value of DNA evidence, we must expand
the likelihood ratio in order to show the separate effect of these two
variables. As explained in the Appendix, the likelihood ratio can be
expanded as follows:
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Using this version of the likelihood ratio, it is easy to show how
the potential for a false positive affects the value of DNA evidence.
Table 1 shows how variations in the prior odds, random match
probability, and false positive probability should affect a rational
evaluator’s assessment of the posterior odds that the suspect was
the source of a biological specimen. The posterior odds presented
in the table were calculated by multiplying the prior odds by the
likelihood ratio as stated in Eq 2.

The prior odds presented in Table 1 are designed to correspond
to four distinct case types that vary in how strongly the suspect is
implicated as the source of the specimen by evidence other than the
DNA match. Prior odds of 2:1 describe a case in which the other
evidence is fairly strong but not sufficient, by itself, for conviction.
It has been reported that DNA testing leads to the exclusion of ap-
proximately one third of suspects in sexual assault cases. Hence,
prior odds of 2:1 might describe a typical sexual assault case sub-
mitted for DNA testing.

1
���
RMP � [FPP � (1 � RMP)]
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Prior odds of 1:10 and 1:100 describe cases in which the other
evidence indicates a relatively low initial probability that the sus-
pect is the source, as might occur if the match were found during a
“DNA dragnet,” in which the police tested many possible contrib-
utors in a particular locality with little reason to suspect any of them
in particular other than their proximity to the crime. Prior odds of
1:1000 describe a case in which there is almost no evidence apart
from the DNA match, as might occur in a “cold hit” case in which
the suspect is selected by scanning a databank of thousands of peo-
ple for matching DNA profiles.

The random match probabilities presented in Table 1 are chosen
to represent a range of values that might plausibly arise in actual
cases. Random match probabilities on the order of one in one bil-

lion (10�9) are often reported when laboratories are able to match
two single source samples over ten or more STR loci. Random
match probabilities closer to one in one million (10�6) are common
when fewer loci are examined, when the laboratory can obtain only
a partial profile of one of the samples, or when one of the samples
contains a mixture of DNA from more than one person. Random
match probabilities near 1 in 1000 (10�3) often result from the use
of less discriminating tests, such as DQ-alpha/polymarker, particu-
larly when the comparison involves a mixed sample.

The false positive probabilities presented in Table 1 are also cho-
sen to represent a plausible range that might arise in actual cases.
Although the probability of a false positive in any particular case
will depend on a variety of factors, commentators generally have
estimated the overall rate of false positives to be between 1 in 100
(0.01) and 1 in 1000 (0.001) (8,13,16). Of course, these estimates
may overstate the probability for cases in which special steps, such
as repeat testing, have been taken to reduce the chance of error. So
for purposes of illustration we also present a false positive proba-
bility of 1 in 10,000 (0.0001). If two independent tests comparing
the same samples each had a false positive probability of 1 in 100,
then the probability of a false positive on both tests would be 1 in
10,000. A false positive probability of zero is also included for pur-
poses of comparison with the other values (although zero is not a
plausible value for this variable).

As Table 1 shows, the posterior odds are strongly influenced by
the prior odds, the random match probability, and the false positive
probability. This result indicates that a rational evaluator should
consider all three factors when assessing the likelihood that the sus-
pect is the source of a particular sample.

One aspect of these results that may be counter-intuitive is that
the importance of the false positive probability for determining the
posterior odds varies dramatically depending on the value of the
random match probability. As Table 1 shows, changes in the false
positive probability have a much greater effect on the posterior
odds when the random match probability is low than when it is
higher. For example, when the random match probability is one in
one billion (10�9), the posterior odds diminish by five orders of
magnitude when the false positive probability increases from 0 to
1 in 10,000. In contrast, when the random match probability is 1 in
1000 (10�3) the same increase in the false positive probability pro-
duces only a small change (much less than one order of magnitude)
in the posterior odds.

These results may seem counter-intuitive given that the false pos-
itive probability and the random match probability are combined in
a manner that is approximately additive in Eq 2. However, the ef-
fect of changing one of these variables on the value of the likelihood
ratio depends on the size of the change relative to the other variable.
Receiving $100 changes my net assets more dramatically if I started
with $1 than if I started with $200. Similarly, an increase of given
size in the false positive probability will affect the likelihood ratio
more dramatically when the random match probability is very small
than when it is larger. Hence, it may be far more important to have
an accurate estimate of the probability of a false positive when eval-
uating a reported match on a rare DNA profile than when evaluat-
ing a reported match on a more common profile.

Another important lesson to be learned from Table 1 is that the
posterior odds can be rather low notwithstanding an impressive
random match probability. When the random match probability is
one in one billion, for example, one might assume that the odds the
suspect is the source of the sample will necessarily and always be
very high. Not so. If the prior odds are 1:1000 because the suspect
was selected by trawling through a large data bank to find a match-

TABLE 1—Posterior odds that a suspect is the source of a sample that
reportedly has a matching DNA profile, as a function of prior odds,

random match probability, and false positive probability.

Random Probability
Prior Match of a False
Odds Probability Positive Posterior Odds

2:1 10�9 0 2 000 000 000
2:1 10�9 0.0001 20 000
2:1 10�9 0.001 2000
2:1 10�9 0.01 200
2:1 10�6 0 2 000 000
2:1 10�6 0.0001 19 802
2:1 10�6 0.001 1998
2:1 10�6 0.01 200
2:1 10�3 0 2000
2:1 10�3 0.0001 1818
2:1 10�3 0.001 1001
2:1 10�3 0.01 182
1:10 10�9 0 100 000 000
1:10 10�9 0.0001 1000
1:10 10�9 0.001 100
1:10 10�9 0.01 10
1:10 10�6 0 100 000
1:10 10�6 0.0001 990
1:10 10�6 0.001 100
1:10 10�6 0.01 10
1:10 10�3 0 100
1:10 10�3 0.0001 91
1:10 10�3 0.001 50
1:10 10�3 0.01 9
1:100 10�9 0 10 000 000
1:100 10�9 0.0001 100
1:100 10�9 0.001 10
1:100 10�9 0.01 1
1:100 10�6 0 10 000
1:100 10�6 0.0001 99
1:100 10�6 0.001 10
1:100 10�6 0.01 1
1:100 10�3 0 10
1:100 10�3 0.0001 9
1:100 10�3 0.001 5
1:100 10�3 0.01 1
1:1000 10�9 0 1 000 000
1:1000 10�9 0.0001 10.0
1:1000 10�9 0.001 1.0
1:1000 10�9 0.01 0.1
1:1000 10�6 0 1000
1:1000 10�6 0.0001 9.9
1:1000 10�6 0.001 1.0
1:1000 10�6 0.01 0.1
1:1000 10�3 0 1.00
1:1000 10�3 0.0001 0.91
1:1000 10�3 0.001 0.50
1:1000 10�3 0.01 0.09



ing profile, and there is little other evidence of his guilt, then the
posterior odds will be only 10 if the false positive probability is 1
in 10,000, only 1.00 if the false positive probability is 1 in 1000,
and only 0.10 if the false positive probability is 1 in 100. Hence, a
rational evaluator who thought the false positive probability was
between 1 in 100 and 1 in 1000 should conclude that the suspect
probably is not the source of the sample, notwithstanding the re-
ported match on a profile found in one person in a billion.

Posterior Odds and the Standard of Proof

One way to understand the posterior odds presented in Table 1 is
to relate them to the traditional standard of persuasion in criminal
trials. How high should the posterior odds be to convince a rational
juror “beyond a reasonable doubt” that the suspect is the source of
the sample?

A number of legal commentators have linked the criminal stan-
dard of persuasion to posterior odds (35). For example, Professor
Richard Friedman (36) has argued that a rational adjudicator
should treat an accused as guilty if and only if

Oy � �
E

E

p

n
� (3)

where Oy is the odds of guilt, Ep is the social cost (disutility) of a
false conviction, and En is the social cost (disutility) of a false ac-
quittal. If one accepts Blackstone’s famous statement that “it is bet-
ter that ten guilty persons escape, than that one innocent suffer”
then, according to Friedman’s analysis, one should convict only if
the posterior odds of guilt are at least 10:1 (37).

The United States Supreme Court has quoted with apparent ap-
proval Thomas Starkie’s statement that “it is better that ninety-nine
. . . offenders should escape than that one innocent man should be
condemned” (38). If one accepts Starkie’s statement, then the pos-
terior odds of guilt should exceed 99:1 to justify conviction. Al-
though there is no apparent consensus among experts on this issue,
Ceci and Friedman (37) have recently argued that Blackstone’s ra-
tio “understates” the correct legal standard for conviction and that
Starkie’s ratio “appears closer to the mark.”

This analysis casts additional light on the data presented in Table
1. To appreciate what the data tell us about the strength of DNA ev-
idence, we can consider the circumstances under which DNA evi-
dence would meet the Blackstone and Starkie standard of proof.
We are not proposing that these quantitative standards be employed
in actual trials. We invoke these standards merely as a framework
for understanding what the data in Table 1 tell us about the value of
DNA evidence. In the discussion that follows, we will assume a hy-
pothetical criminal case in which a laboratory reports a DNA match
between a sample known to have come from the perpetrator and a
reference sample from the defendant. We will assume that identity
is the only issue in the case, and hence that the jurors should con-
vict if they are convinced beyond a reasonable doubt that the de-
fendant is the source of the sample. Under what circumstances
should a rational jury convict the defendant?

When the prior odds are 2:1, the posterior odds are well above
both the Blackstone and Starkie threshold for all levels of random
match probability and false positive probability presented in Table
1. Because the case against the defendant is relatively strong even
without the DNA evidence, the reported DNA match is sufficient
to push a rational evaluator over the threshold of conviction even
under the worst-case scenario in which both the random match
probability (10�3) and the false positive probability (0.01) are high.

When the prior odds are 1:10, the situation becomes more com-
plicated. Here the other evidence against the defendant is weaker

and the DNA evidence must therefore be a bit stronger to push a ra-
tional evaluator across the threshold of conviction. For this type of
case, the posterior odds are well above the Starkie threshold only
when the random match probability is one in one million (10�6) or
less and the false positive probability is 1 in 10,000 or less. When
the false positive probability is 1 in 100, the posterior odds are at or
below the Blackstone threshold for all random match probabilities.
Thus, for cases of this type, it appears very important to know
whether the false positive probability might be as high as 1 in 100.
If so, there is “reasonable doubt” about the defendant’s guilt.

When the prior odds are 1:100, the DNA evidence must be very
powerful to justify conviction. The posterior odds barely meet the
Starkie threshold when the random match probability is one in one
million or less and the false positive probability is 1 in 10,000. The
posterior odds exceed the Blackstone threshold only when the ran-
dom match probability is one in one million or less and the false
positive probability is 1 in 10,000 or less. For this type of case, it is
again crucial to know the exact value of the false positive proba-
bility in order to determine whether the DNA is strong enough to
justify conviction. If the false positive rate is as high as 1 in 1000,
there is “reasonable doubt” about the defendant’s guilt.

In the weakest case, when the prior odds are 1:1000, DNA evi-
dence is insufficient to meet the Starkie standard under any of the
values listed in Table 1, except when the false positive probability
is (unrealistically) assumed to be zero. Even when the random
match probability is one in one billion and the false positive prob-
ability is 1 in 10,000, the posterior odds barely reach the Black-
stone threshold. For a case of this type, a false positive probability
of even 1 in 1000 should render the DNA evidence insufficient to
justify conviction. Indeed, when the random match probability is 1
in 1000, a DNA match is insufficient even to prove that the suspect
is more likely than not to be the source of the sample.

The False Positive Fallacy

The key conclusion to emerge from this analysis is the impor-
tance of having accurate information about both the random match
probability and the false positive probability when evaluating DNA
evidence. Ignoring or underestimating the potential for a false pos-
itive can lead to serious errors of interpretation, particularly when
the other evidence against the suspect (apart from the DNA evi-
dence) is weak.

We return therefore to the question raised at the beginning of this
article. Why is it considered essential to have valid scientific data
on the random match probability but unnecessary to have valid data
on the false positive probability?

We believe the explanation lies partly in a common logical fal-
lacy that we shall call the false positive fallacy. We suspect that
people mistakenly assume that if the false positive probability is
low then the probability of a false match must also be low in every
case. For example, a forensic scientist who thinks that there is only
a 1% chance (1 chance in 100) of falsely declaring a match between
the samples in a case if they really do not match, might assume that
there is, necessarily, a 99% chance (99 chances in 100) that the re-
ported match is a true match. This assumption is fallacious, al-
though the mistake is not easy to see.

The fallacy arises from mistakenly equating the conditional
probability of a match being reported when the samples do not
match (the false positive probability) with the probability that the
samples do not match when a match has been reported. These two
probabilities are not the same. The false positive probability is the
probability of a match being reported under a specified condition
(no match). It does not depend on the probability of that condition
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occurring. By contrast, the probability that the samples do not
match when a match has been reported depends on both the prob-
ability of a match being reported under the specified condition (no
match) and on the prior probability that that condition will occur.
Consequently, the probability that a reported match is a true match
or a false match cannot be determined from the false positive prob-
ability alone.

In formal terms, the fallacious assumption is that P(M  R) �
1–P(R  M�), where M is the event that the suspect and the perpe-
trator have matching DNA profiles, M� is the event that they do not
have matching profiles, and P(R  M�) is the false positive proba-
bility, i.e., the probability of a match being reported given that the
samples do not have matching profiles. This assumption is falla-
cious because it ignores the prior odds that the suspect’s profile
matches the sample profile. Let the prior odds, P(M)/P(M�), equal
1/k where k is large. Then:
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Assume P(R  M) � 1. Then P(M  R) � 1/[1 � k � P(R  M�)]
which can be much lower than 1 � P(RM  M�) when k is large.

For example, suppose that the prior odds the suspect will match
are 1:1000 because the suspect is selected through a large DNA
dragnet and appears, initially, to be an unlikely perpetrator. Sup-
pose further that a DNA match is reported and that the false posi-
tive probability is 0.01 (1 in 100). The probability that this reported
match is a true match is, therefore, 1/[1�1000(0.01] � 0.0999. In
other words, the probability that this reported match is a true match
is not 0.99 (99 chances in 100), as the false positive fallacy would
suggest; it is less than 0.1 (one chance in ten).

Thus, when the prior odds that a particular suspect will match are
very low, as might be the case if the suspect is identified during a
“DNA dragnet” or database search, the probability that the samples
do not match when a match has been reported can be far higher than
the false positive probability. For cases of this type, true matches
are expected to be rare. Therefore, the probability in a particular
case that a non-match will mistakenly be reported as a match, even
if low, may approach or even surpass the probability that the sus-
pect truly matches.

The false positive fallacy is similar in form to the well known
“prosecutor’s fallacy” (39), but differs somewhat in content. Vic-
tims of the false positive fallacy mistakenly assume that P(M/R) �
1–P(R/M�). Victims of the prosecutor’s fallacy mistakenly assume
that P(S/M) � 1–P(M/S�) (39). Both fallacies arise from failure to
take account of prior probabilities (or odds) when evaluating new
evidence; both can lead to significant overestimation of the poste-
rior probability when the prior probability is low. The prosecutor’s
fallacy is an erroneous way of estimating the probability that the
suspect is the source of a sample based on evidence of a matching
characteristic; the false positive fallacy is an erroneous way of es-
timating the probability of a true match based on a reported match.
It is important that forensic scientists, and others who evaluate
DNA evidence, understand and appreciate both fallacies.

False Positives and Cold Hits

When first introduced, DNA testing was used primarily for
“confirmation cases,” that is, cases where other evidence pointed to
a likely suspect (40). In recent years, the growing use of offender
databanks and “DNA dragnets” has created a new class of cases,
sometimes called “cold hit” or “trawl cases,” in which the DNA
match itself makes the defendant a suspect (40,41). In such cases

there may be little evidence against a suspect other than a DNA
match.

The evidentiary value of “cold hit” DNA matches has been de-
bated. The National Research Council, in reports on forensic DNA
evidence issued in 1992 (1) and 1996 (28), argued that DNA
matches obtained in database searches are less probative than those
obtained when testing a previously identified suspect because the
probability of finding a match by chance increases when one trawls
though a database comparing large numbers of profiles.

However, statisticians David Balding and Peter Donnelly have
argued persuasively from a Bayesian perspective that the likelihood
ratio describing the value of a DNA match does not depend on the
nature of the search that produced the match and hence that a cold
hit is just as powerful as any other DNA match (assuming the same
random match probability) (41). By their account, the strength of the
overall case may sometimes be weak when the suspect was identi-
fied in a database search because the prior probability of guilt in
such cases can be very low, but the trawl through the database does
not diminish the probative value of the DNA match. In fact, they ar-
gue that a database DNA match may provide slightly stronger evi-
dence of identity than a confirmation case match if, as typically hap-
pens, the search of the database rules out (excludes) a large number
of other individuals while finding a match to only one (40,41).

The Balding and Donnelly analysis seems correct, as far as it
goes. However, Balding and Donnelly acknowledge that they “ig-
nore the possibility of handling or laboratory error leading to a
‘false positive’ match, although this possibility must be addressed
in practice” (41). The analysis reported in the present article goes
beyond that of Balding and Donnelly to demonstrate the implica-
tions of false positives for both confirmation and trawl cases and
thereby casts important new light on the question of the evidentiary
value of database matches.

The potential for false positives may be a particularly important
consideration when evaluating DNA evidence in trawl cases where
the prior probability that any particular suspect is the source of an
evidentiary sample is very low. In such cases, a key issue is
whether the DNA match is sufficiently probative to create a high
posterior probability that the suspect is the source despite the low
prior probability. The results reported in Table 1 suggest that the
probability of a false positive may be a critical factor in determin-
ing whether the DNA evidence is indeed strong enough.

Consider, for example, the hypothetical cases illustrated in Table
1 in which the prior odds that the suspect is the source of an evi-
dentiary sample are 1:1000 and the random match probability is
one in one billion (10�9). If the probability of a false positive is
zero, then the posterior odds are a million to one in favor of the sus-
pect being the source, which certainly seems high enough to justify
confidence in that conclusion. In other words, the DNA evidence
has more than enough probative value to make up for the low prior
probability. However, if the false positive probability is even 1 in
10,000, the posterior odds in favor of the suspect being the source
are reduced drastically to only 10:1. It is very important for those
evaluating DNA evidence to understand that a false positive prob-
ability on the order of 1 in 10,000, which may seem low enough to
be “safe,” may nevertheless undermine the value of a one-in-a-bil-
lion DNA match sufficiently that, when combined with a low prior
probability, there is still room for doubt about whether the suspect
is the source of the matching sample.

Of course, the assessment of hypothetical cases cannot tell us
whether, as a practical matter, the false positive probability could
be as high as 1 in 10,000 in a given case. As Donnelly and Fried-
man have noted, “what matters is not the probability of any labora-



tory error, but rather only the probability of those errors that would
lead to the false declaration of a match in the given case—a proba-
bility that will vary widely with the circumstances of the DNA test-
ing” (40). The false positive probability is undoubtedly affected by
such factors as the quality of laboratory work and the clarity of the
results. Dangerous laboratory practices, such as handling and pro-
cessing evidentiary and reference samples in close physical and
temporal proximity, might increase the false positive probability.
Loose interpretive standards that allowed a match to be called
based on incomplete or problematic data might also increase the
false positive probability. Fortunately, the particular circumstances
of database searches would seem to rule out, or at least greatly re-
duce, the likelihood of some types of errors, such as those arising
from switching or cross-contaminating samples, because samples
are tested at different times and, often, in different laboratories.
However, other types of errors, such as those arising from misin-
terpretation of test results, might still produce false matches.
Whether the chance of a false match is high enough to be of con-
cern is a question that should be considered carefully in each case
by those who evaluate DNA evidence. The practical value of this
article is in showing circumstances under which even low false
positive probabilities should be of concern.

Conclusion

The present article does not address the difficult question of how
to estimate the false positive probability, but it shows the impor-
tance of knowing how high that probability might be. Whether a
suspect should be judged guilty or not guilty depends, in some
cases, on whether the false positive probability is closer to 1 in 100,
1 in 1000, or 1 in 10,000. Particularly in cases in which there is lit-
tle other evidence against the suspect, ignorance of the true proba-
bility of error creates a disturbing element of uncertainty about the
value of DNA evidence. Commentators have noted the difficulty of
generating accurate estimates of the probability of a false positive
in a particular case (14,16,28). However, the task is no less impor-
tant for being difficult.

External blind proficiency testing is said to be the best source of
information about laboratory error rates (1,13,42). Of course, the
rate of error in a proficiency testing does not necessarily equate to
the false positive probability in a particular case because the unique
circumstances of each case may make various types of errors more
or less likely than average. Nevertheless, data on the rate of various
types of errors in proficiency testing provide insight into the likely
range of values for a particular case (14,42). When considering the
probability of a false positive due to a sample switch error, it would
clearly be helpful to know, for example, whether the rate of such
errors in forensic laboratories in general is 1 in 50 or 1 in 20,000.
Similarly, when considering the probability of a false positive due
to inadvertent cross-contamination of samples, or misinterpretation
of test results, it would be helpful to know how often cross-con-
tamination, or misinterpretation, occurred in proficiency tests.

There has been continuing debate over the feasibility of external
blind proficiency testing of forensic DNA laboratories. The Na-
tional Institute of Justice funded a major study of this issue in which
small-scale blind proficiency tests were conducted to assess their
practicality and costs (43). The study found that blind proficiency
testing is possible, although costly and “fraught with problems.”
The estimated annual cost of administering two blind proficiency
tests (involving simulated cases) to each of the 150 DNA testing lab-
oratories in the United States was $450,000 to $3,020,000. The di-
rectors of the study recommended to NIJ that a program of blind pro-
ficiency testing be deferred in order to allow assessment of less

costly alternative programs, such as external laboratory audits, that
might achieve many of the same goals. It remains to be seen whether
an audit program will be implemented and whether such a program
will produce useful data on laboratory error rates.

In the absence of such data, the problem of error will not go
away. It will only become more acute as DNA testing is used in a
widening range of cases. If DNA evidence is to achieve its full
promise and potential, forensic scientists and legal professionals
must give more attention to this issue.

Appendix

Here we describe how the traditional Bayesian likelihood ratio
may be expanded to show the separate effect of the random match
probability (RMP) and the false positive probability (FPP) on the
value of a reported DNA match. Our analysis follows a method first
described by David Schum and his colleagues for distinguishing re-
liability and diagnosticity of evidence in “cascaded inference”
(33,44).

We begin by distinguishing R, a reported match, from M, a true
match. We assume there are two possible underlying states of real-
ity:

M: The suspect and the specimen have matching DNA profiles;

M�: the suspect and the specimen do not have matching DNA
profiles.

However, it is impossible to know with certainty whether M or
M� is true because the only information available about M, M� is the
laboratory report, which might be mistaken.

The numerator of the conventional likelihood ratio, P(R  S), is
equivalent to the expression P(R � S)/P(S), where P(R � S) means
the probability that both R and S occur. Furthermore, P(R � S) can
be written as the disjoint union of two compound events, P(R � M
� S) and P(R � M� � S). Therefore, P(R � S) � P(R � M � S) �
P(R � M� � S).

Because

P(R � M � S) � P(R | M � S) � P(M | S) � P(S)

and

P(R � M� � S) � P(R | M� � S) � P(M� | S) � P(S),

we can eliminate P(S) and write:

P(R | S) � P(R | M � S) � P(M | S) � P(R | M� � S) � P(M� | S)

The denominator of the likelihood ratio can be expanded in sim-
ilar fashion. Hence, the likelihood ratio, in expanded form, can be
written as:
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In order to simplify this rather cumbersome statement of the like-
lihood ratio, we will assume that P(R � M) is independent of S, S�.
In other words, we assume the probability that a match will be re-
ported if there really is a match is not affected by whether the match
is coincidental. Consequently, P(R | M � S) � P(R | M � S�) �
P(R | M). Because the suspect and specimen will necessarily have
matching DNA profiles if the suspect is the source of the specimen,
P(M  S) � 1.00 and P(M� � S) � = 0.00. Finally, because M� can

P(R | M ∩ S) � P(M | S) � P(R | M� ∩ S) � P(M� | S)
������
P(R | M ∩ S�) � P(M | S�) � P(R | M� ∩ S�) � P(M� | S�)
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only arise under S�, P(R | M� � S�) can be simplified to P(R  M�). Ac-
cordingly, Eq 5 can be re-stated as:
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In this expanded version of the likelihood ratio, the term P(R 
M) is the probability that the laboratory will report a match if the
suspect and the specimen have matching DNA profiles. If the sam-
ples are adequate in quantity and quality, and the laboratory is com-
petent, we would expect P(R  M) to be close to 1.00. Estimates of
less than 1 imply that the laboratory may fail to detect a true match
due, for example, to error (a “false negative”) or inadequately sen-
sitive procedures. For present purposes, we will simply assume that
P(R  M) � 1.00.

The term P(M  S�) is the probability of a coincidental match. For
a comparison between single-source samples, P(M  S�) is the ran-
dom match probability, RMP, or the frequency of the matching
profile in a relevant reference population. Because M and M� are
mutually exclusive and exhaustive, P(M�  S�) is the complement of
the RMP. Finally, the term P(R  M�) is the false positive probabil-
ity, FPP. Substituting terms, the expanded likelihood ratio can be
restated as in the form presented in the text as Eq 2:

�
P

P

(

(

R

R




S

S

�
)

)
� � (2)

References
1. National Research Council. DNA technology in forensic science. Wash-

ington, D.C.: National Academy Press, 1992.
2. Thompson WC, Ford S. The meaning of a match: sources of ambiguity

in the interpretation of DNA prints. In: Farley M, Harrington J, editors.
Forensic DNA technology. New York: CRC Press, Inc, 1991;93–152.

3. Thompson WC. Subjective interpretation, laboratory error and the value
of forensic DNA evidence: three case studies. Genetica 1995;96:153–68.

4. Taroni F, Aitken CGG. Forensic science at trial. Jurimetrics
1997;37:327–37.

5. Kaye DH, Sensabaugh GF. Reference guide on DNA evidence. In: Cecil
J, editor. Reference manual on scientific evidence. Washington, DC:
Federal Judicial Center, 2000;2:485–576.

6. Thompson WC. Forensic DNA evidence. In: Black B, Lee P, editors. Ex-
pert evidence: a practitioner’s guide to law, science and the FJC manual.
St. Paul, MN: West Group, 1997;195–266.

7. Jerome Smith v. State. Southern Reporter, Alabama Court of Criminal
Appeals, 1995;677:1240–48.

8. Koehler JJ. Error and exaggeration in the presentation of DNA evidence.
Jurimetrics 1993;34:21–39.

9. Kaye D. DNA evidence: probability, population genetics, and the courts.
Harv J Law Technol 1993;7:101–72.

10. Jonakait RN. Stories, forensic science and improved verdicts. Cardozo L
Rev 1991;13:343–52.

11. Koehler JJ. DNA matches and statistics: important questions, surprising
answers. Judicature 1993;76:222–9.

12. Thompson WC. Comment. In Roeder K, DNA fingerprinting: a review
of the controversy. Stat Sci 1994;9:263–6.

13. Koehler JJ. The random match probability in DNA evidence: irrelevant
and prejudicial? Jurimetrics 1995;35:201–19.

14. Thompson WC. Accepting lower standards: The National Research
Council’s second report on forensic DNA evidence. Jurimetrics
1997;37(4):405–24.

15. Mueller L. The use of DNA typing in forensic science. Acct in Res
1993;3:1–13.

16. Roeder K. DNA fingerprinting: a review of the controversy. Stat Sci
1994;9:222–47.

17. check B, Neufeld P, Dwyer F. Actual innocence. New York: Doubleday,
2000.

18. Brenner L, Pfleeger B. Investigation of the sexual assault of Danah H.
Philadelphia, PA: Philadelphia Police Department DNA Identification
Laboratory; 1999 Sept. 24; Lab No.: 97-70826.

1
���
RMP � [FPP � (1 � RMP)]

P(R | M)
�����
P(R | M) � P(M | S�) � P(R | M�) � P(M� | S�)

19. Brenner L, Pfleeger B. Amended report: investigation of the sexual as-
sault of Danah H. Philadelphia, PA: Philadelphia Police Department
DNA Identification Laboratory; 2000 Feb. 7; Lab No.: 97-70826.

20. Cotton RW, Word C. Amended report of laboratory examination. Ger-
mantown, MD: Cellmark Diagnostics; 1995 Nov 20; Case No.:
F951078.

21. Schneider PM, Fimmers R, Woodroffe S, Werrett DJ, Bär W,
Brinkmann B, et al. Report of a European collaborative exercise com-
paring DNA typing results using a single locus VNTR probe. Forensic
Sci Intl 1991;49:1–15.

22. Gill P, Woodroffe S, Bar W, Brinkmann B, Carracedo A, Eriksen B, et
al. A report of an international collaborative experiment to demonstrate
the uniformity obtainable using DNA profiling techniques. Forensic Sci
Intl 1992;53:29–43.

23. Gill P, Kimpton C, D’Aloja E, Anderson JF, Bar W, Brinkmann B, et al.
Report of the European profiling group (EDNAP): Towards standardis-
ation of short tandem repeat (STR) loci. Forensic Sci Intl 1994;65:51–9.

24. Kimpton C, Gill P, D’Aloja E, Anderson JF, Bar W, Holgersson S, et al.
Report on the second collaborative STR exercise. Forensic Sci Intl
1995;71:137–52.

25. Wiegand P, Amgach E, Augustin C, Bratzke H, Cremer U, Edelman J, et
al. GEDNAP IV and V. The 4th and 5th stain blind trials using DNA
technology. Intl J Legal Med 1995;108:79–84.

26. Anderson JF, Martin P, Carracedo A, Dobosz M, Eriksen B, Johnsson V,
et al. Report on the third EDNAP collaborative STR exercise. Forensic
Sci Int 1996;78:83–93.

27. Technical Working Group on DNA Analysis Methods (TWGDAM). Es-
tablished guidelines for a quality assurance program for DNA testing
laboratories; including RFLP and PCR technologies. Crime Lab Dig
1995;18:44–75.

28. National Research Council. The evaluation of forensic DNA evidence.
Washington, DC: National Academy Press, 1996.

29. Balding DJ. Errors and misunderstandings in the second NRC report. Ju-
rimetrics 1997;37:469–76.

30. Thompson WC. DNA evidence in the O.J. Simpson trial. U Colorado L
Rev 1996;67(4):827–57.

31. People v. Venegas: California Reporter, California Supreme Court,
1998;18:47–88.

32. Aitken CGG. Statistics and the evaluation of evidence for forensic sci-
entists. Chichester: J. Wiley & Sons, 1995.

33. Schum DA. Evidential foundations of probabilistic reasoning. New
York: John Wiley & Sons, 1994.

34. Robertson B, Vignaux GA. Interpreting evidence. Evaluating forensic
science in the courtroom. Chichester: J. Wiley & Sons, 1995.

35. Lempert RO. Modeling relevance. Michigan L Rev 1975;75:1021–101.
36. Friedman RD. Answering the bayesioskeptical challenge. Intl J Evid

Proof 1997;1:276–8.
37. Ceci SJ, Friedman RD. The suggestibility of children: scientific research

and legal implications. Cornell L Rev 2000;86(1):33–108.
38. Schlup v. Delo: United States Reports, U.S. Supreme Court, 1995;

513:298–322.
39. Thompson WC, Schumann EL. Interpretation of statistical evidence in

criminal trials: the prosecutor’s fallacy and the defense attorney’s fal-
lacy. Law Hum Behav 1987;11:167–87.

40. Donnelly P, Friedman RD. DNA database searches and the legal con-
sumption of scientific evidence. Michigan L Rev 1999;97:931–84.

41. Balding DJ, Donnelly P. Evaluating DNA profile evidence when the 
suspect is identified through a database search. J Forensic Sci 1996;
41(4):603–7.

42. Koehler JJ. Why DNA likelihood ratios should account for error (even
when a national research council report says they should not). Jurimet-
rics 1997;37:425–37.

43. Peterson JL, Gaensslen RE. Developing criteria for model external DNA
proficiency testing: final report. Chicago, IL: University of Illinois at
Chicago; 2001 May.

44. Schum DA, DuCharme WM. Comments on the relationship between the
impact and the reliability of evidence. Org Behav Human Perf 1971;6:
111–31.

Additional information and reprint requests:
William C. Thompson, J.D., Ph.D.
Department of Criminology, Law & Society
University of California
Irvine, CA 92697-7080
E-mail: wcthomps@uci.edu


