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ABSTRACT: DNA profiles from multiple-contributor samples
are interpreted by comparing the probabilities of the profiles under
alternative propositions. The propositions may specify some known
contributors to the sample and may also specify a number of un-
known contributors. The probability of the alleles carried by the set
of people, known or unknown, depends on the allelic frequencies
and also upon any relationships among the people. Membership of
the same subpopulation implies a relationship from a shared evolu-
tionary history, and this effect has been incorporated into the prob-
abilities. This acknowledgment of the effects of population struc-
ture requires account to be taken of all people in a subpopulation
who are typed, whether or not they contributed to the sample.

KEYWORDS: forensic science, DNA typing, interpretation,
mixed DNA profiles, population structure, likelihood ratios

The interpretation of DNA profiles from more than one contrib-
utor is one of the most challenging tasks facing forensic scientists.
Part of the complexity is due to the very large number of combina-
tions of genotypes that must be considered in some situations, al-
though a body of theory for a coherent treatment of mixed stains is
now available (1–3). For a defendant who is not excluded from a
mixed stain this theory avoids the potential prejudice that can fol-
low from simplistic “random man not excluded” arguments.

In some cases, the typing technology may allow complexity to
be avoided. When fragments are detected in ways that allow semi-
quantitation of the amount of DNA for each allele it may be possi-
ble to determine which alleles are from the same contributor. Ex-
amples include fluorescently-labeled length variants detected by
lasers, or silver staining to detect band intensity on a gel. There can
still be doubt, however, especially when different people contribute
more or less equally to the mixture and such problems increase
with the number of contributors. As long as a quantitative assess-
ment of the evidentiary strength of DNA mixtures is required, we
believe that there will be a need for analyses that consider all pos-
sible sets of genotypes that would lead to the mixture profile.

Our previous treatment (3) assumed independence of all the al-
leles in the mixed profile. This means independence within indi-

viduals, implying Hardy-Weinberg and linkage equilibrium, as
well as independence between individuals, meaning that the con-
tributors are unrelated. Although these assumptions may be ade-
quate in many situations, they ignore the low-level dependence
among alleles within the same population due to evolutionary
forces. Two people within the same population must have common
ancestors at some point in the past, the point being closer for
smaller populations, and this imposes a dependence between their
alleles. A necessary corollary to this evolutionary relationship is
the low degree of inbreeding among offspring of two parents from
the same population. It is this logic that leads to the necessity of
working with conditional profile probabilities rather than the pro-
file probabilities themselves, and it is what led to Recommendation
4.2 of the second NRC report (2). Instead of determining the prob-
ability of finding a profile in a random member of a population, it
is necessary to determine the probability of finding the profile
given that the profile has been seen once already. Conditional prob-
abilities take explicit account of allelic dependencies.

In this paper we extend our previous treatment to allow for the
dependencies among all the alleles carried by the contributors to
the mixture. Initially we will assume that all contributors belong to
the same population, as this is likely to maximize the effects we are
considering. We will also adopt the relatively simple formulation
for the probabilities of sets of alleles advocated by Balding and
Nichols (4). Less restrictive treatments (5) would be unwieldy. Al-
though we do not expect the population structure effects that we are
considering will be substantial, we believe that they should be con-
sidered for mixed DNA stains to the same extent that they are con-
sidered for single stains.

Likelihood Ratios

Likelihood ratios have been recognized by authors of several re-
cent books as the appropriate way of interpreting evidence (6–11).
At a trial there will be alternative hypotheses or propositions about
who contributed to this evidence: the prosecution will have propo-
sition Hp, and here we will suppose there is a single alternative
proposition Hd. The likelihood ratio LR is
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The DNA evidence E for mixed-stain cases is the set of alleles
found among all the people who have either been typed directly or
whose type is inferred because they are considered to have con-
tributed to the stain. Previously (3) we took E to mean only the al-
leles in the stain, but the addition now of the alleles from people
who may have been typed even though they are hypothesized not
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to have contributed to the stain is necessary to allow for the effects
of population structure.

We will make a distinction between the genetic profile, which is
simply a listing of the distinct alleles in the mixture, and the statis-
tical profile which is a list of all 2n alleles when there are n con-
tributors. These two profiles will be different whenever some con-
tributors are homozygous, or when some contributors share alleles.
We will ignore the possibility of null alleles so that only homozy-
gous individuals contribute a single allele to a genetic profile.

We will use much of our previous notation (3), and repeat our
observation that the interpretation of a mixed stain genetic profile
requires a specification of the known contributors to the profile and
of the number of unknown contributors. We will derive results for
single loci and then multiply likelihood ratios over loci.

As an example, suppose the evidentiary sample in a single-per-
petrator rape case shows three alleles a, b, c at some locus. The
sample was recovered from the victim’s person, she was found to
be of type ab and a suspect was found to be of type c. The prose-
cution proposition is likely to be Hp: “The victim and the suspect
were the only contributors to the sample,” and a likely alternative
proposition is Hd: “The victim and some unknown man were the
only contributors to the sample.” The usual solution (2,3) for this
situation is

LR 5 (1)

where the p’s are the allele frequencies. We now derive this result
from the perspective of this paper, first with population structure
ignored.

Under proposition Hp only the victim and suspect are involved
and they have both been typed. The DNA evidence is therefore the
genotype pair (ab, cc). We write the probability of this pair as
Pr(ab, cc) 5 2 Pr(abcc). The approach we are taking assigns prob-
abilities to sets of alleles without regard to the arrangement of alle-
les among individuals, but we do need a factor of “2” for the het-
erozygous victim. Had the victim been ab and the suspect bc we
would have required the probability 4 Pr(abbc) since there are then
two heterozygotes. When population structure is ignored, as it was
previously (3), the probability of a set of alleles is just the product
of frequencies of the separate alleles, so Pr(abcc) 5 papbpc

2. The
numerator of LR is, therefore,

Pr(E | Hp) 5 2papbpc
2 (2)

Note that, because the victim and suspect are both known individ-
uals, there is no need to consider the 2! orders of these two people
as was erroneously done in in the first printing of (7).

Under proposition Hd there are three people to consider: the sus-
pect of genotype cc who did not contribute to the sample, and the
victim of type ab plus the perpetrator of unknown genotype who
both did contribute to the sample. Examination of the profiles of
the sample and the victim shows that the unknown man must have
allele c and may also have alleles a, b or c. There are a total of six
alleles in E, and the probability is Pr(ab, cc, ac) 1 Pr(ab, cc, bc) 1
Pr(ab, cc, cc) or 4 Pr(aabccc) 1 4 Pr(abbccc) 1 2 Pr(abcccc). The
denominator of LR is

Pr(E | Hd) 5 4p2
apbpc

3 1 4pap2
bpc

3 1 2papbpc
4 (3)

The factors of 2 or 4 are because of the one or two heterozygotes.
Dividing Eq 2 by Eq 3 leads to the previously known result given
in Eq 1.

It will be helpful to modify this example before proceeding fur-
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ther. Suppose the profiles are the same as just discussed, except that
now the sample is not from the victim’s person (e.g., it may be from
discarded clothing) and the alternative to Hp is specified as Hd:
“Two unknown people were the contributors to the sample.” Under
this proposition, there are four people involved: the victim and sus-
pect, neither of whom contributed to the sample, and two unknown
people who were the contributors. These last two people must have
alleles abc between them but cannot have any other alleles. The
possible combinations of genotypes for the unknown people are
(aa, bc), (ab, ac), (ab, bc), (ab, cc), (bb, ac), (ac, ab), (ac, bb), (ac,
bc), (bc, aa), (bc, ab), (bc, ac), and (cc, ab). These 12 combinations
represent three distinct sets of alleles: aabc, abbc, abcc, and each
set has a coefficient of 12 which is the number of ways of arrang-
ing the four alleles into two different genotypes. The coefficient in-
cludes the effects of the two orders of alleles within heterozygotes
as well as the two orders of different genotypes such as aa, bc and
bc, aa. The probabilities of all eight alleles among the four people
involved are obtained by multiplying the probabilities 12 Pr(aabc),
12 Pr(abbc), 12 Pr(abcc) by the probability Pr(ab, cc) 5 2
Pr(abcc) of the victim and suspect, and can be written as 24
Pr(aaabbccc) 1 24 Pr(aabbbccc) 1 24 Pr(aabbcccc) so that

Pr(E | Hd) 5 24p3
ap2

bpc
3 1 24p2

ap3
bpc

3 1 24p2
ap2

bpc
4 (4)

Dividing Eq 2 by Eq 4 gives the LR for this situation as
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as has been given before (3).
We now modify the solutions in Eqs 1 and 5 to accommodate the

situation where all people, the victim, the suspect and (under Hd)
the unknown person(s), belong to the same subpopulation. Proba-
bilities for the genotype(s) of the unknown person(s) must take into
account the knowledge that two people in this subpopulation have
been found to have genotypes ab and cc.

For both scenarios, Hp is that only the victim and suspect were
the contributors to the sample. We will show that the required term
Pr(abcc) is given by

Pr(abcc) 5

where u is the coancestry coefficient in the subpopulation to which
the victim and suspect both belong.

For the denominator in the first scenario, which is that the victim
and an unknown person contributed to the sample but the suspect
did not, there are three people and six alleles to consider. We will
show, for example, that

Pr(aabccc) 

5

where u is the coancestry coefficient for the subpopulation to
which all three people belong. These expressions lead to

LR 5 (6)

which reduces correctly to Eq 1 when u 5 0.
For the second scenario, where both contributors to the sample

(1 1 3u)(1 1 4u)
}}}}}}
[(1 2 u)pc 1 2u][(1 2 u)(2pa 1 2pb 1 pc) 1 7u]

[(1 2 u)pa][(1 2 u)pa 1 ua][(1 2 u)pb]
3 [(1 2 u)pc][(1 2 u)pc 1 u][(1 2 u)pc 1 2u]
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that occur in the crime sample (C ). For a particular proposition
there are alleles (T ) carried by typed people declared to be con-
tributors and alleles (U ) carried by unknown contributors to the
sample, and there are alleles (V ) carried by any people declared not
to have contributed to the sample. There are corresponding sets of
distinct alleles—the genetic profiles—and these sets are indicated
by a g subscript. Note that the same person may be declared to be
a contributor to the sample under one proposition, and declared not
to be contributor under another proposition.

Allele Sets

The alleles in the evidence profile are carried by typed people
declared to be contributors or unknown people, so that C is the
combination (union) of sets T and U. For a given proposition, the
probability of the evidence profile depends also on the alleles car-
ried by people who have been typed but are declared by that propo-
sition not to have contributed to the profile. For a proposition in
which there are x unknown contributors, we write the probability as
Px (T, U, V ) in an extension of our previous notation (3). Note,
however, that the present probability is for all the alleles in the sets
T, U, V whereas the probability in (3) was for only the alleles in U
conditional on those in T. In the total set of 2nC 1 2nV 5 2nT 1
2nU 1 2nV alleles, we see from Table 1 that allele Ai occurs ci 1

CURRAN ET AL. • INTERPRETING DNA MIXTURES 989

TABLE 1—Notation for mixture calculations.

Alleles in the profile of the evidence sample.
C The set of alleles in the evidence profile.
Cg The set of distinct alleles in the evidence profile.
nC The known number of contributors to C.
hC The unknown number of heterozygous contributors.
c The known number of distinct alleles in Cg.
ci The unknown number of copies of allele Ai in C.

1 # ci # 2nC, Σc
i51 ci 5 2nC

Alleles from typed people that H declares to be contributors.
T The set of alleles carried by the declared contributors to C.
Tg The set of distinct alleles carried by the declared contributors.
nT The known number of declared contributors to C.
hT The known number of heterozygous declared contributors.
t The known number of distinct alleles in Tg carried by nT declared

contributors.
ti The known number of copies of allele Ai in T.

0 # ti # 2nT, Σc
i51 ti 5 2nT.

Alleles from unknown people that H declares to be contributors.
U The sets of alleles carried by the unknown contributors to C.
x The specified number of unknown contributors to C: nC 5 nT 1 x.
c 2 t The known number of alleles that are required to be in U.
r The known number of alleles in U that can be any allele in Cg,

r 5 2x 2 (c 2 t).
nx The number of different sets of alleles U, nx 5 (c 1 r 21)!/

[(c21)!r!].
ri The unknown number of copies of Ai among the r unconstrained

alleles in U.
0 # ri # r, Σc

i51 ri 5 r.
ui The unknown number of copies of Ai in U: ci 5 ti 1 ui,

Σc
i51 ui 5 2x.

If Ai is in Cg but not in Tg: ui 5 ri 1 1. If Ai is in Cg and also in Tg: 
ui 5 ri.

Alleles from typed people that H declares to be non-contributors.
V The set of alleles carried by typed people declared not to be

contributors to C.
nV The known number of people declared not to be contributors to C.
hV The known number of heterozygous declared non-contributors.
vi The known number of copies of Ai in V: Σi vi 5 2nV.

are unknown under Hd, we need terms such as Pr(aaabbccc), and
we will show that

Pr(aaabbccc) 5 }
XaX

Y
bX c
}

where

Xa 5 [(1 2 u)pa][(1 2 u)pa 1 u][(1 2 u)pa 1 2u]
Xb 5 [(1 2 u)pb][(1 2 u)pb 1 u]
X c 5 [(1 2 u)pc][(1 2 u)pc 1 u][(1 2 u)pc 1 2u]
Y 5 (1 2 u)(1)(1 1 u)(1 1 2u)(1 1 3u)(1 1 4u)(1 1 5u)

3 (1 1 6u)

so that LR becomes

LR 5 (7)

3[(1 2 u)(pa 1 pb 1 pc) 1 7u]

and this reduces to Eq 5 when u 5 0.
What is the numerical effect of using Eq 6 instead of Eq 1? When

allele frequencies are all relatively small at 0.1 and u has the rela-
tively high value of 0.03, the LR drops from 20 to 12.33. Multiply-
ing values from Eq 6 over several loci can give quite large LR val-
ues, but they will be less than those from Eq 1 in which population
structure is ignored.

The approach we have just illustrated is as follows. Alternative
propositions are needed that specify the numbers of contributors to
the evidentiary sample. Some of these contributors will be known
and typed people, and some will be unknown people. Those con-
tributors, together with any typed people who are known (under the
proposition) not to be contributors, contain among them a set of al-
leles whose probability can be written down as the product of the
separate allele proportions or as a more complicated function that
incorporates the population structure parameter u. There is also a
factor of 2 for each known heterozygote, and a term for the number
of ways of arranging all 2x alleles from x unknown people into
pairs. There may be different sets of alleles from unknown people
under some propositions, and the probabilities for these sets must
be added together. The likelihood ratio is the ratio of probabilities
under alternative propositions. As additional examples, we list the
results for each of the common cases described in (7) in the Ap-
pendix.

Although it is possible to follow the above line of argument for
any situation, we prefer to work with a general approach amenable
to automatic (computer-based) calculation as we did previously
(3). This will relieve the forensic scientist of the need for lengthy
calculations in the same way that computer programs such as POP-
STATS can be used for other DNA calculations. We will lay out
the logic behind this general approach even though we anticipate
the routine use of computer packages.

In order to do this we need to break the problem into two parts;
we list the alleles, with their multiplicities, carried by the unknown
contributors under Hp or Hd, and then we determine the probabili-
ties of the allele sets. The two probabilities lead to the likelihood
ratio. It is our use of the theory in (4) that allows us to concentrate
on alleles rather than genotypes.

Notation

Much of the complexity in dealing with mixtures can be re-
moved by a mnemonic notation, as laid out in Table 1. We find it
very helpful to label the alleles at a locus A by the letters Ai. There
are sets of alleles (not necessarily distinct—the statistical profiles)

(1 1 3u)(1 1 4u)(1 1 5u)(1 1 6u)
}}}}}}
12[(1 2 u)pa 1 u][(1 2 u)pb 1 u][(1 2 u)pc 1 2u]
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vi 5 t i 1 ui 1 vi times. We add the probabilities over all possible
nx 5 (c 1 r 2 1)!/[(c 2 1)!r!] distinct sets of ui. As listed in Table
1, c is the number of distinct alleles in Cg and r is the number of al-
leles carried by unknown people that can be any one of these c al-
leles.

Generating the nx sets U is a two-stage process. Some of the al-
leles in each set must be present: these are the alleles in the set Cg

that are not in set Tg. Other alleles are not under this constraint be-
cause they already occur in Tg, and there are ri copies of Ai alleles
in this unconstrained set. It is a straightforward computing task to
let r1 range over the integers 0, 1, . . ., r, then let r2 range over the
integers 0, 1, . . ., r 2 r1, then let r3 range over the integers 0, 1, . . .,
r 2 r1 2 r2, and so on. The final count rc is obtained by subtract-
ing the sum of r1, r2, . . ., rc21 from r. The total number of Ai alle-
les in set U is ∑c

i51 ui 5 2x where ui 5 ri for those alleles in both
Cg and Tg, and ui 5 ri 1 1 for alleles in Cg but not in Tg.

For any ordering of the 2x 5 ∑i ui alleles in U, successive pairs
of alleles can be taken to represent genotypes and there are
(2x)!/(∏c

i51 ui!) possible orderings. This is the number of possible
sets of unknown genotypes that have each allelic set U. Although it
is the genotypes that correspond to the x unknown people, it is the
set of 2x alleles that we use to determine the probability, in combi-
nation with the 2nT 1 2nV alleles among the known people. Be-
cause the nT typed people all have specified genotypes, we consider
not all possible orderings of the 2nT alleles but just a factor of 2 for
each heterozygote. Similarly, we need a factor of 2 for each het-
erozygote among the set of nV non-contributors (this corrects erro-
neous statements in (7)).

For the single-perpetrator rape example above, now writing alle-
les a, b, c as A1, A2, A3, the evidence sample set is Cg 5 (A1, A2, A3)
and c 5 3. Under Hd (the victim and one unknown person con-
tributed to the mixed stain) the set from known people is T 5 (A1,
A2) and nT 5 1, t 5 2. The set from the unknown person must con-
tain A3 since c 2 t 5 1, x 5 1, r 5 1, but can also contain any of
the three alleles in set Cg: i.e. there are nx 5 3 different sets of al-
leles from the unknown person. We also considered the situation
where Hd is that the evidence stain was from two unknown people,
x 5 2 and no known contributors, nT 5 t 5 0. Now U must contain
all three alleles A1, A2, A3, c 2 t 5 3, and the r 5 1 other allele can
be any of these three. There are nx 5 3 different sets U. The counts
of alleles A1, A2, A3 in these sets are, therefore, (2,1,1), (1,2,1),
(1,1,2) and each of these can be ordered in 4!/(2!1!1!) 5 12 ways.

Allele Dependencies

We now consider how to attach probabilities to the sets of a
lleles discussed in the last section. We suppose that a state of 
evolutionary equilibrium has been established, so that the proba-
bilities of sets of alleles can be found from the Dirichlet distribu-
tion (13). This distribution depends on allele proportions and the
coancestry coefficient. The statement that the relationship between
pairs of alleles in a subpopulation can be quantified by the coances-
try coefficient u has several interpretations (12). Here we will take
it to mean that the probability that two alleles taken at random from
the subpopulation are both of type Ai is pi

2 1 upi (1 2 pi), where pi

is the allele frequency of Ai averaged over subpopulations. When
allele frequencies over populations follow the Dirichlet distribu-
tion, the probability of a set of frequencies {pi} for alleles Ai is
given by

Pr({pi}) 5 }∏
G

iG

(g
(g
.)

i )
} ∏

i

(pi )gi21

where

gi 5 (1 2 u)pi /u, g. 5 ∑
i

gi 5 (1 2 u)/u

and G is the gamma function with the property G(x 1 1) 5 xG(x).
The great advantage of this Dirichlet distribution is that it allows
the probability of any set of alleles to be found very simply. If the
set has mi copies of Ai, then the probability is
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where m. 5 ∑i m i. This is the result upon which Eqs 4.10 in the
1996 NRC report (2) are based (4).

In our mixed-stain situation, there are ti 1 ui 1 vi copies of al-
lele Ai, and the required probability is

Px(T, U, V ) 5 ∑
0#ri#r

∑c
i51 

ri5r
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i51
(9)

Summing over the {ri} values accounts for all nx sets U.
Although this is a very compact expression, implementing it in a

computer program is easier after some expansion. From the prop-
erties of the gamma function G(?) and the definition of gi

5

5

We can also make the summation over {ri} values more explicit
by showing the range of values of each ri. Equation 9 becomes

Px(T, U, V ) 5 ∑
r

r150
∑

r2r1

r250
??? ∑

r2r12. . .2rc22

rc2150
}
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1

hT

u

1

i!
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}

3 (10)

Likelihood ratios are formed as the ratios of two such probabilities,
and we note that people declared to be contributors under one
proposition may be declared to be non-contributors under the other.
In other words, every person typed is declared to be either a con-
tributor or a non-contributor. The number of people typed, and the
alleles they carry among them, are the same for every proposition.
For this reason, nT 1 nV, hT 1 hV and ui 1 vi will be the same in
the probabilities for each proposition. The term 2hT 1hV will cancel
out of the likelihood ratio, as will some of the terms in the products
in the numerator and denominator of the right hand side of Eq 10.

If population structure is ignored, and u is set to zero, Eq 10 re-
duces to

Px(T, U, V )

5 ∑
r

r150
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r2r1
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}}}}

∏ j50
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This is equivalent to Eq 3 in our earlier treatment (3) and may be in
a form more convenient for computation. Because of cancelation of
terms in the likelihood ratio, it can be seen that nT, nV, hT, hV, ti, vi

are not used when u 5 0. In this case the value of LR depends only
on the numbers and frequencies of the alleles carried by unknown
contributors. There is no need to consider the genotypes of typed
people, whether or not they contribute to the evidence sample. This
is different to the situation where population structure is taken into
account—then the genotypes of all typed people are needed.

In the degenerate case where there are no typed people, contrib-
utors or non-contributors, ti 5 vi 5 0, then ui 5 ri and the sum for
u 5 0 is just a multinomial expansion:

Px(U) 5 1∑
c

i51
pi22x

Examples

We now consider an example where the evidence sample Cg 5
(A1A2A3A4) (c 5 4) is known to be from two perpetrators but only
one suspect, of type A1A2, has been apprehended. Proposition Hp is
that this suspect and one unknown person were the contributors, so
T 5 (A1A2) (nT 5 1, t 5 2) and U has only one possibility (nx 5 1):
the two alleles A3A4. There are no known non-contributors, so V 5
f, nV 5 0 where f denotes the empty set. The probability under Hp

is

P1({A1A2}, {A3A4}, {f}) 
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Proposition Hd is that there are no known contributors, T 5 f,
nT 5 0, there is one person known not be a contributor, V 5 (A1A2),
nV 5 1, and there are two unknown contributors who must carry all
four alleles between them. Once again, there is only one possible
set U 5 (A1A2A3A4), nx 5 1 and the probability is

P2({f}, {A1A2A3A4}, {A1A2}) 

5 }
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The likelihood ratio for this example is, therefore,

LR 5

which reduces to 1/(12p1p2) when u 5 0 as has been given previ-
ously (1,3).

A more complicated example is for a rape committed by three
men. Suppose that the evidence sample has alleles (A1, A2, A3, A4),
the victim is of type A1A2 and a single suspect has type A3A3. Then
two alternative propositions are; Hp: “The victim, the suspect and
two unknown men contributed to the sample,” and Hd: “The victim
and three unknown men contributed to the sample.”

The evidence genetic profile has c 5 4 alleles Cg 5 (A1, A2, A3,

(1 1 3u)(1 1 4u)
}}}}
12[(1 2 u)p1 1 u][(1 2 u)p2 1 u]

48(1 2 u)3p1p2p3p4[(1 2 u)p1 1 u][(1 2 u)p2 1 u]
}}}}}}

(1 1 u)(1 1 2u)(1 1 3u)(1 1 4u)

A4). Under proposition Hp there are t 5 3 distinct alleles Tg 5 (A1,
A2, A3) from two known contributors and no alleles from people
known not to be contributors, V 5 f. For x 5 2 unknown contrib-
utors, the number of sets of r 5 3 alleles these people can carry in
addition to the A4 allele they must have among them is n2 5
6!/(3!3!) 5 20. The counts u1, u2, u3, u4 for all four alleles A1, A2,
A3, A 4 among the two unknown men, together with the multiplici-
ties [4!21]/ [u1!u2! u3!u4!], are

0,0,0,4:2 0,0,1,3:8 0,0,2,2:12 0,0,3,1:8 0,1,0,3:8

0,1,1,2:24 0,1,2,1:24 0,2,0,2:12 0,2,1,1:24 0,3,0,1:8

1,0,0,3:8 1,0,1,2:24 1,0,2,1:24 1,1,0,2:24 1,1,1,1:48

1,2,0,1:24 2,0,0,2:12 2,0,1,1:24 2,1,0,1:24 3,0,0,1:8

Under proposition Hd there are t 5 2 alleles, T 5 (A1, A2), from
a known contributor (the victim) and two alleles V 5 A3, A3 from a
person (the suspect) known not to be a contributor. For x 5 3 un-
known contributors, the number of sets of r 5 4 alleles these peo-
ple can carry in addition to the A3, A4 alleles they must have among
them is n3 5 7!/(4!3!) 5 35. The counts u1, u2, u3, u4 for A1, A2, A3,
A4, with coefficients [6!21]/(u1!u2!u3!u4!), for the 35 possible sets
are:

0,0,1,5:12 0,0,2,4:30 0,0,3,3:40 0,0,4,2:30 0,0,5,1:12

0,1,1,4:60 0,1,2,3:120 0,1,3,2:120 0,1,4,1:60 0,2,1,3:120

0,2,2,2:180 0,2,3,1:120 0,3,1,2:120 0,3,2,1:12 0,4,1,1:60

1,0,1,4:60 1,0,2,3:120 1,0,3,2:120 1,0,4,1:60 1,1,1,3:240

1,1,2,2:360 1,1,3,1:240 1,2,1,2:360 1,2,2,1:360 1,3,1,1:240

2,0,1,3:120 2,0,2,2:180 2,0,3,1:120 2,1,1,2:360 2,1,2,1:360

2,2,1,1:360 3,0,1,2:120 3,0,2,1:120 3,1,1,1:240 4,0,1,1:60

For each proposition, the multiplicities are multiplied by the ap-
propriate Dirichlet probabilities and the 20 or 35 terms added to-
gether. Obviously this is a task better suited for a computer.

Multiple Subpopulations

So far we have considered the situation where all people in-
volved in the evidence interpretation have been in the same sub-
population. Other situations are likely, especially when victim and
suspect belong to different racial groups. The same sets of alleles
are involved as before, but now the probabilities need to be calcu-
lated separately for the alleles within each subpopulation.

We begin by returning to our first example of a single-perpetra-
tor rape where the victim was of type A1, A2, the suspect was of type
A3A3 and the evidence sample was A1A2A3. If there was reason to
believe that the perpetrator was of the same racial type as the sus-
pect, but of a different type from the victim, then the victim’s alle-
les need to be separated from those of the suspect and, under Hd,
from the unknown perpetrator. Suppose that the victim belonged to
racial group 1, with coancestry u1 for her subpopulation and allele
frequencies p1, p2, for A1, A2. Suppose also that the suspect and per-
petrator belong to racial group 2, with coancestry coefficient u2 for
their subpopulation and allele frequencies q1, q2, q3 for alleles A1,
A2, A3. Suppose, further, that there is zero coancestry between alle-
les in different racial groups so that alleles in groups 1 and 2 can be
treated independently.
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Under Hp, the probability is

P0({A1A2A3A3}, {f}, {f})

5 2(1 2 u1)p1p2 3 q3[(1 2 u2)q3 1 u2]

since the pair A1A 2 from group 1 and the pair A3A3 from group 2
are treated separately. Under Hd, one of the three components of
P1({A1A2}, U, {A3A3}) is

P1({A1A2 }, {A1A3}, {A3, A3}) 5 2(1 2 u1)p1p2

3

since the pair A1A2 from group 1 and the two pairs A1A3, A3A3 from
group 2 are treated separately. Equation 6 is replaced by

LR 5

The general Eq 10 can be modified to allow for different sub-
populations. However, when any of the three sets T, U, V contains
alleles from different subpopulations, as was the case in the exam-
ple just considered, it will be necessary to introduce further nota-
tion. Each of the counts ti, ui, vi would need to be split into a com-
ponent for each subpopulation, and the multiplicity coefficients
would also need to be derived separately for each subpopulation.

Discussion

We offer this treatment of the effects of population structure on
DNA mixture calculations to complement two previous treat-
ments—the effects of population structure on single stains (2,4)
and the interpretation of mixed stains without population structure
(1,3). Our study therefore closes a gap in current DNA forensic in-
terpretation.

Our treatment is based firmly on the use of likelihood ratios and
the accompanying need for conditional probabilities. There is no
alternative when the evidence is less than certain under the propo-
sition Hp. Conditional probabilities are necessary to incorporate the
known genetic nature of DNA profiles. The full meaning of pro-
files cannot be found without accounting for the role of evolution
in shaping the probabilities of sets of profiles. The novel feature of
this study lies in accounting for the information contained in the
profiles of people who are declared not to have contributed to the
evidence profile. This has arisen for the situation of a suspect, who
is not excluded from the evidence profile, being declared not to be
a contributor under proposition Hd.

The arguments made for incorporating non-contributors can be
extended. Several people may be typed during the course of an in-
vestigation. Even if they are excluded as being contributors, they
provide information for the probability calculations when they can
be considered to belong to the same subpopulation as (some of)
people not excluded. They make their contribution to the calcula-
tion via allelic set V.

Our treatment has assumed a specific number of unknown con-
tributors, but we realize that this number is very likely not to be
known. Although some general statements about conservative as-
sumptions can be made (3), such as assuming large numbers of un-
known people for loci with few alleles and small numbers of un-
known people for loci with many alleles, we prefer not to formulate
rules. Instead we recommend the calculation of likelihood ratios

(1 1 u2)(1 1 2u2)
}}}}}}
[(1 2 u2)q3 1 2u2][(1 2 u2)(2q1 1 2q2 1 q3) 1 3u2]

2(1 2 u2)q2q3[(1 2 u2)q3 1 u2][(1 2 u2)q3 1 2u2]
}}}}}}

(1 1 u2)(1 1 2u2)

under plausible ranges of numbers, and the reporting of the more
conservative results.

We have not allowed for unseen, or “null,” alleles as has been
done previously (2,3) because the move away from RFLP technol-
ogy in forensic science has diminished the need for such a treat-
ment. We have not considered other typing-system features such as
intensity or peak height differences as these have been discussed
elsewhere. However, we do consider that the approach described
here is sufficiently flexible to allow the interpretation of many dif-
ferent mixed-stain DNA profiles.

Software for conducting the calculations described in this paper
can be obtained directly from the World Wide Web page
www.stat.ncsu.edu (click on “Statistical Genetics”) or by sending
email to weir@stat.ncsu.edu.
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APPENDIX

In this Appendix we show the effects of population structure for
each of the six common situations described in Chapter 7 of (7). A



tributors are constrained to be U 5 A1A2 and x 5 1, r 5 0. The al-
leles from people declared not to be contributors are V 5 A1A2 and
nV 5 1, hV 5 1.

The required probabilities are

Hp: P0({A1A2A3A4}, f, f)

5

Hd: P1({A3A4}, {A1A2}, {A1A2})

5

and the likelihood ratio is

LR 5

Case 2: Three-Allele Mixture, Homozygous Victim, and
Heterozygous Suspect

The victim is of type A3, the suspect is of type A1A2, and the
crime sample of type A1A2A3. The two propositions are

Hp: The victim and the suspect contributed to the stain.
Hd: The victim and an unknown person contributed to the stain.

The evidence sample is C 5 (A1A2A3A3), so Cg 5 (A1A2A3) and 
c 5 3.

Under Hp, the alleles from known contributors are Tg 5 A1A2A3

and nT 5 2, hT 5 1, t 5 3. There are no alleles from unknown con-
tributors or from people declared not to be contributors, so nV 5 hV

5 0.
Under Hd, the allele from known contributors is Tg 5 A3 and nT

5 1, hT 5 0, t 5 1. The alleles from the unknown contributor are
constrained to include A1A2, and x 5 1, r 5 0. The alleles from the
person declared not to be a contributor are V 5 A1A2 and nV 5 1,
hV 5 1.

The required probabilities are

Hp: P0({A1A2A3A3}, f, f) 

5

Hd: P1({A3A3}, {A1A2}, {A1A2}) 

5

and the likelihood ratio is

LR 5

as it was for Case 1.

Case 3: Three-Allele Mixture, Heterozygous Victim, and
Homozygous Suspect

The victim is of type A2A3, the suspect is of type A1, and the
crime sample of type A1A2A3. The two propositions are

(1 1 3u)(1 1 4u)
}}}}
2[(1 2 u)p1 1 u][(1 2 u)p2 1 u]

212!(1 2 u)3p1p2p3[(1 2 u)p1 1 u]
3 [(1 2 u)p2 1 u][(1 2 u)p3 1 u]

}}}}}
1!1!(1 2 u)(1 1 u)(1 1 2u)(1 1 3u)(1 1 4u)

21(1 2 u)3p1p2p3[(1 2 u)p3 1 u]
}}}}}

(1 2 u)(1 1 u)(1 1 2u)

(1 1 3u)(1 1 4u)
}}}}
2[(1 2 u)p1 1 u][(1 2 u)p2 1 u]

222!(1 2 u)4p1p2p3p4[(1 2 u)p1 1 u][(1 2 u)p2 1 u]
}}}}}}

1!1!(1 2 u)(1 1 u)(1 1 2u)(1 1 3u)(1 1 4u)

22(1 2 u)4p1p2p3p4
}}}
(1 2 u)(1 1 u)(1 1 2u)
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diagram for the profiles in each case is shown in Fig. 1, and in each
case setting u 5 0 reduces the result to the one given in (7).

Case 1: Four-Allele Mixture, Heterozygous Victim, and
Heterozygous Suspect

The victim is of type A3A4, the suspect is of type A1A2, and the
crime sample of type A1A2A3A4. The two propositions are

Hp: The victim and the suspect contributed to the stain.
Hd: The victim and an unknown person contributed to the stain.

The evidence sample is C 5 Cg 5 (A1A2A3A4) and c 5 4.
Under Hp, the alleles from known contributors are T 5 Tg 5

A1A2A3A4 and nT 5 2, hT 5 2, t 5 4. There are no alleles from un-
known contributors or from people declared not to be contributors,
so nV 5 hV 5 0.

Under Hd, the alleles from known contributors are T 5 Tg 5
A3A4 and nT 5 1, hT 5 1, t 5 2. The alleles from unknown con-

FIG. 1



Hd: P2(f, {A1A2A3A4}, {A1A2}) 

5

and the likelihood ratio is

LR 5

Case 5: Three-Allele Mixture, Heterozygous Suspect,
and One Unknown

The suspect is of type A1A2, and the crime sample of type
A1A2A3. The two propositions are

Hp: The suspect and one unknown person contributed to
the stain.

Hd: Two unknown people contributed to the stain.

The evidence sample is C 5 (A1A2A2A3A3), so Cg 5 (A1A2A3) and
c 5 3.

Under Hp, the alleles from known contributors are Tg 5 A1A2

and nT 5 1, hT 5 1, t 5 2. The alleles from unknown contributors
are constrained to include A3 and may also include A1, A2 or A3.
There are no alleles from people declared not to be contributors, so
nV 5 hV 5 0.

Under Hd, there are no alleles from known contributors, so nT 5
0, hT 5 0, t 5 0. The alleles from the unknown contributor are con-
strained to include A1, and x 5 1, r 5 1. The unknown contributor
may also carry alleles A1, A2 or A3. The alleles from the person de-
clared not to be a contributor are V 5 A1A2 and nV 5 1, hV 5 1.

The required probabilities are

Hp: P1({A1A2}, {A3A?}, f) 

5

1

1

Hd: P2(f, {A1A2A3?}, {A1A2}) 

5

1

1

and the likelihood ratio is

LR 5
(1 1 3u)(1 1 4u)[(1 2 u)(2p1 1 2p2 1 p3) 1 5u]
}}}}}}
12[(1 2 u)p1 1 u][(1 2 u)p2 1 u]

3 [(1 2 u)( p1 1 p2 1 p3) 1 5u]

214!(1 2 u)3p1p2p3[(1 2 u)p1 1 u]
3 [(1 2 u)p2 1 2u][(1 2 u)p3 1 u]

}}}}}}
1!1!2!(1 2 u)(1 1 u)(1 1 2u)(1 1 3u)(1 1 4u)

214!(1 2 u)3p1p2p3[(1 2 u)p1 1 u]
3 [(1 2 u)p2 1 2u][(1 2 u)p2 1 2u]

}}}}}}
1!2!1!(1 2 u)(1 1 u)(1 1 2u)(1 1 3u)(1 1 4u)

214!(1 2 u)3p1p2p3[(1 2 u)p1 1 u]
3 [(1 2 u)p1 1 2u][(1 2 u)p2 1 u]

}}}}}}
2!1!1!(1 2 u)(1 1 u)(1 1 2u)(1 1 3u)(1 1 4u)

212!(1 2 u)3p1p2p3[(1 2 u)p3 1 u]
}}}}

2!(1 2 u)(1 1 u)(1 1 2u)

212!(1 2 u)3p1p2p3[(1 2 u)p2 1 u]
}}}}

1!1!(1 2 u)(1 1 u)(1 1 2u)

212!(1 2 u)3p1p2p3[(1 2 u)p1 1 u]
}}}}

1!1!(1 2 u)(1 1 u)(1 1 2u)

(1 1 3u)(1 1 4u)
}}}}
12[(1 2 u)p1 1 u][(1 2 u)p2 1 u]

214!(1 2 u)4p1p2p3p4[(1 2 u)p1 1 u][(1 2 u)p2 1 u]
}}}}}}

1!1!1!1!(1 2 u)(1 1 u)(1 1 2u)(1 1 3u)(1 1 4u)
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Hp: The victim and the suspect contributed to the stain.
Hd: The victim and an unknown person contributed to the stain.

The evidence sample is C 5 (A1A1A2A3), so Cg 5 (A1A2A3) and c
5 3.

Under Hp, the alleles from known contributors are Tg 5 A1A2A3

and nT 5 2, hT 5 1, t 5 3. There are no alleles from unknown con-
tributors or from people declared not to be contributors, so nV 5 hV

5 0.
Under Hd, the alleles from known contributors are Tg 5 A2A3 and

nT 5 1, hT 5 1, t 5 2. The alleles from the unknown contributor are
constrained to include A1, and x 5 1, r 5 1. The unknown contrib-
utor may also carry alleles A1, A2 or A3. The alleles from the person
declared not to be a contributor are V 5 A1, so nV 5 1, hV 5 0.

The required probabilities are

Hp: P0({A1A1A2A3}, f, f) 5

Hd: P1({A2A3}, {A1A?}, {A1A1}) 

5

1

1

and the likelihood ratio is

LR 5

Case 4: Four-Allele Mixture, Heterozygous Suspect,
and One Unknown

The suspect is of type A1A2, and the crime sample of type
A1A2A3A4. The two propositions are

Hp: The suspect and an unknown person contributed to
the stain.

Hd: Two unknown people contributed to the stain.

The evidence sample is C 5 Cg 5 (A1A2A3A4) and c 5 4.
Under Hp, the alleles from known contributors are T 5 Tg 5

A1A2 and nT 5 1, hT 5 1, t 5 2. There are two alleles A3A4 from
unknown contributors, but no alleles from people declared not to be
contributors, so nV 5 hV 5 0.

Under Hd, there are no alleles from known contributors are T 5
Tg 5 f and nT 5 0, hT 5 0, t 5 0. The alleles from unknown con-
tributors are constrained to be U 5 A1A2A3A4 and x 5 2, r 5 0. The
alleles from people declared not to be contributors are V 5 A1A2

and nV 5 1, hV 5 1.
The required probabilities are

Hp: P1({A1A2}, {A3A4}, f) 5
212!(1 2 u)4p1p2p3p4

}}}
1!1!(1 2 u)(1 1 u)(1 1 2u)

(1 1 3u)(1 1 4u)
}}}}}}
[(1 2 u)p1 1 2u][(1 2 u)( p1 1 2p2 1 2p3) 1 7u]

212!(1 2 u)3p1p2p3[(1 2 u)p1 1 u]
3 [(1 2 u)p1 1 2u][(1 2 u)p3 1 u]

}}}}}}
1!1!(1 2 u)(1 1 u)(1 1 2u)(1 1 3u)(1 1 4u)

212!(1 2 u)3p1p2p3[(1 2 u)p1 1 u]
[(1 2 u)p1 1 2u][(1 2 u)p2 1 u]

}}}}}}
1!1!(1 2 u)(1 1 u)(1 1 2u)(1 1 3u)(1 1 4u)

212!(1 2 u)3p1p2p3[(1 2 u)p1 1 u]
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}}}}}}
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21(1 2 u)3p1p2p3[(1 2 u)p1 1 u]
}}}}

(1 2 u)(1 1 u)(1 1 2u)



Case 6: Four-Allele Mixture, Two Heterozygous Suspects

The suspects are of type A1A2 and A3A4, and the crime sample is
of type A1A2A3A4. The two propositions may be

Hp: The two suspects contributed to the stain.
Hd: Two unknown people contributed to the stain.

The evidence sample is C 5 Cg 5 (A1A2A3A4) and c 5 4.
Under Hp, the alleles from known contributors are T 5 Tg 5

A1A2A3A4 and nT 5 2, hT 5 2, t 5 4. There are no alleles from un-
known contributors or from people declared not to be contributors,
so nV 5 hV 5 0.

Under Hd, there are no alleles from known contributors, T 5 Tg

5 f and nT 5 hT 5 t 5 0. The alleles from unknown contributors
are constrained to be U 5 A1A2A3A4 and x 5 2, r 5 0. The alleles
from people declared not to be contributors are V 5 A1A2A3A4 and
nV 5 2, hV 5 2.

The required probabilities are

Hp: P0({A1A2A3A4}, f, f) 5

Hd: P2(f, {A1A2A3A4}, {A1A2A3A4}) 5 Q

where

Q 5

and the likelihood ratio is

LR 5
(1 1 3u)(1 1 4u)(1 1 5u)(1 1 6u)

}}}}}
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}}}}}}
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22(1 2 u)4p1p2p3p4
}}}
(1 2 u)(1 1 u)(1 1 2u)

CURRAN ET AL. • INTERPRETING DNA MIXTURES 995


