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ABSTRACT: The interpretation of mixed DNA stains is explained 
in the context of likelihood ratios. The probabilities for the mixed- 
stain profile are evaluated under alternative explanations that spec- 
ify the numbers of contributors and the profiles of any known 
contributors. Interpretations based simply on the frequencies with 
which random members of a population would not be excluded 
from a mixed-stain profile do not make use of all the information, 
and may overstate the strength of the evidence against included 
people. The effects of the numbers of contributors depends on 
whether all the alleles at a locus are present in the mixed stain. A 
general equation is given to allow likelihood ratios to be calculated, 
and includes the "2p" modification suggested by the 1996 NRC 
report. This modification is not always conservative. A computer 
program to perform calculations is available. 

KEYWORDS: forensic science, mixed stains, DNA profiles, likeli- 
hood ratios 

For a large variety of crimes, the use of genetic markers has 
proved invaluable in identifying perpetrators or exonerating falsely 
accused suspects. However, the interpretation of genetic profiles 
from biological samples can be complicated when the samples 
contain material from more than one person. This is especially 
common in rape cases: The sample may contain material from the 
victim or consensual sexual partners as well as from the perpetrator, 
or there may be multiple perpetrators. Mixed-stain evidence was 
discussed by Evett et al. (1991), and more recently by Aitken 
(1995). Their method, which is the same as the one we use, has 
been endorsed by the National Research Council (1996). 

This approach differs from previous treatments (National 
Research Council, 1992) that calculate only the proportion of the 
population that is either included or excluded in a mixed stain. 
Such calculations ignore the profiles of specific people associated 
with the mixture, and so are analogous to the "random man not 
excluded" probabilities in paternity cases (e.g., Walker et al., 1983). 
Our calculations do consider specific profiles, and so are more 
like the "paternity index." Moreover, the conventional calculations 
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do not consider the number of contributors to the mixture, and 
therefore miss the interaction between the number of alleles and the 
number of contributors on the numerical strength of the evidence of 
a mixed stain. Only by comparing the probabilities of the eviden- 
tiary profile under alternative explanations is it possible to arrive 
at a complete analysis of mixtures. Indeed, we show by example 
that the conventional method can overstate the strength of evidence 
against a defendant not excluded from a mixed stain. 

In this paper, we offer some rules to simplify the interpretation 
of mixed stains, and phrase these rules in terms of the probabilities 
of certain subsets of the alleles present in the mixed stain. The 
subsets are the alleles that come from people whose identity is 
not known with certainty. The rules we describe give an immediate 
way of deriving results such as those given as examples by the 
National Research Council (1996). Our results begin with the 
assumption that the number of contributors to the mixed stain is 
known, and then we point to methods that make conservative 
assumptions about this number. We also consider how to interpret 
mixed VNTR profiles, when there may be unseen alleles. 

To keep the treatment as simple as possible, only discrete genetic 
systems will be treated. These include conventional blood group 
markers, binned RFLP markers, as well as the current PCR-based 
markers. We assume that a profile has been determined for an 
evidentiary sample, that there are indications of more than one 
contributor to the sample, and that the sample may contain the 
profiles of one or more known people. The task is to assign a 
numerical weight to this evidence, and this in turn requires that- 
databases are available from which to estimate frequencies of 
components of the profile. 

As a further simplification, we assume independence of alleles, 
within and between loci. We develop methods for handling single- 
locus profiles and then multiply results over loci. We also defer 
the issue of population structure and relatedness, both of which 
cause dependencies between the profiles of different people. 

Likelihood Ratios 

The convenient likelihood ratio framework for assigning weight 
to evidence will be used (e.g., Aitken, 1995; Balding and Nichols, 
1994; Evett, 1983; Lindley, 1977; Weir, 1994). The likelihood 
ratio for comparing two alternative explanations, C and C, for the 
evidentiary profile is formed as the ratio of the probabilities of 
the profile under the alternatives. The likelihood ratio is written 
as L and the profile as E, so 

Pr(EIC) 
L =  

Pr(EI~ ~) 

If a jury is being asked to make a choice between explanations C 
and C, it can be told "The profile E is L times more likely to have 
arisen under explanation C than under explanation C." 
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General Notation 

We have found it very helpful to introduce notation that makes 
calculation of the likelihood ratio somewhat automatic. The key 
is to specify who are the known contributors to the profile, and 
therefore which alleles in the profile may be from unknown contrib- 
utors, under each explanation. The likelihood ratio becomes the 
ratio of the probabilities of the sample profile, taking into account 
both the known and unknown contributors. For example, suppose 
an evidentiary sample has four alleles abcd at some locus and that 
it is known the sample contains DNA from the victim and the 
perpetrator. Suppose, further, the victim has type ab and a suspect 
has type cd. The prosecution explanation C would be that the 
known contributors are the victim and the suspect, whereas the 
defense explanation C may be that the victim is a known contribu- 
tor, but that alleles cd came from an unknown contributor. 

�9 The probability of the sample stain under C is one, because all 
four alleles can be explained with certainty. There are no unknown 
contributors, and the probability is written as Po(dolabcd) = 1. The 
subscript 0 indicates the number of unknown contributors, the 
quantity ~b indicates the "empty" set of alleles that were from 
unknown contributors, and abcd is the sample profile. 

�9 The probability of the sample profile under explanation C is 
written as Pj(cdlabcd). Now the subscript 1 indicates the one 
unknown contributor, the set cd is the alleles from this unknown 
person, and abcd is still the whole profile. 

�9 The likelihood ratio is 

Po( dplabcd) 
L - (1) 

PI (cdlabcd) 

In general, the evidentiary profile contains a set E of alleles at 
some locus. There may be known contributors to the profile, having 
some or all of these alleles between them. Under at least one of 
the alternative explanations, there are unknown contributors. These 
people must carry the set U of alleles in E not carried by the 
known contributors, and they cannot carry any alleles not in E. If 
there are x unknown contributors to the profile, then what is needed 
is the probability Px(UIE) that these x people have the alleles in 
U between them, but do not have any alleles not in E. When there 
are no unknown contributors, the symbol P0 will be used. 

We have found that this approach and notation allows us to 
approach any situation. For example, suppose a victim reports 
having been raped by two men, and one suspect is identified. 
Suppose, also, it is known that there have been no consensual 
partners. The evidentiary sample is assumed to contain DNA from 
the victim and the perpetrators, and is found to have alleles abcd. 
(Although preferential extraction, Gill et al., 1985, may minimize 
the DNA from the victim in the male fraction, it may not eliminate 
her DNA.) The victim is of type ab and the suspect of type cd. 
Explanation C is that there is one unknown contributor to the 
sample (the second perpetrator), but this person is not required to 
have any specific alleles. He cannot have alleles other than abcd. 
Under explanation C, there are two unknown contributors (both 
perpetrators) and these two must have contributed alleles cd 
between them. The likelihood ratio is 

P t( +labcd) 
L - (2) 

Pz(edlabcd) 

Calculation of  Probabilities--We now illustrate how the Px( UIE) 
probabilities can be calculated. We also give a general formula, 
suitable for computer programs, and list the cases most likely 
needed in casework in Appendix 1. 

Profiles with One Allele 

If the profile has only alleles of type a at a locus, then all 
contributors must be aa homozygotes. The possibility of unseen 
alleles will be addressed later. The profile at other loci, or other 
factors, indicate that the evidentiary stain is a mixture. Assuming 
independence of alleles within loci, the probability that one 
unknown contributor has allele a, and no allele other than a, is 

P~(ala) = p ]  

where p,  is the population frequency of allele a, and p2 is the 
frequency of homozygotes in the population. If there are x unknown 
contributors, they must all be aa homozygotes and 

Px(ala) = pa 2x 

If a known contributor to the profile is homozygous aa, then there 
are no unexplained alleles. The probability needed, for x unknowns, 
is P~(d~la), where + is the empty set. Although these unknown 
people do not need to provide a specific allele, in fact they can 
only be of type aa, so 

P~(~bla) = p2~, 

This is a good place to point out that allele frequencies like Pa 
refer to the "relevant" population: those people who might be 
considered potential contributors to the evidentiary sample. This 
population is defined by circumstances of the crime, rather than 
by attributes of the suspect. The circumstances may prescribe a 
particular ethnic group, in which case frequencies should be used 
for that group. Otherwise, frequencies from different ethnic groups 
should be considered. The ethnicity of the suspect is not material 
as we are not considering population structuring. 

Profiles with Two Alleles 

If the profile has alleles ab, then all contributors must be of 
genotype aa, ab or bb. If the source of only allele a is in question, 
the contributor of that allele must be of type aa or ab. People of 
type ac, where c is any other allele, are excluded because the 
sample profile does not contain c. Therefore the probability that 
one unknown contributor has allele a, and no allele other than a 
or b, is 

Pl(alab) = p] + 2p,dTb 

= (p,, + pb)2 _ p2 

The generalization to x contributors is 

p~.(alab) = (p,, + pb) 2x - p ~  

This expression gives the probability of all combinations of x 
people who have only alleles a and b, and it excludes only the 
situation where all x are bb homozygotes because that set of  people 
could not contribute allele a. When x = 2, for example, the possible 



sets of  people are aa, aa; aa,  ab; aa, bb; ab, ab; ab, bb. The 
probabilities of  these sets are p4, 3 ~ -~ 4 4p,dTb, 6pTd~[,, . p,,p), which add 
to (p, + pl,) 4 - p4. If known contributors already have alleles ab, 
then unknowns need not have any specific alleles, but they cannot 
have alleles other than ab, so 

p,.(qbtab) = (p,, + pt,) z' 

When x = 2, the possible sets of  people are aa, aa; aa, ab; aa, 
bb; ab, ab; ab, bb; bb, bb. The probabilities of  these sets add to 
(p,, + pb)4. Finally, if  there are no known contributors, then both 
alleles ab must be carried by the unknown contributors 

p,.(ablab) = (p,, + pb) z" -- p,~" -- p{,' 

This allows for all combinations of  x people who have no alleles 
other than a or b, except the cases where all x people are aa or 
all are bb. These last two cases could not result in an ab profile 
for the mixed stain. When x = 2, the possible sets of  people are 
aa, ab; aa, bb; ab, ab; ab, bb. These sets have probabilities adding 
to (p,, + p b )  4 - -  p 4  _ p4 = 2papb(2p2 + 3paPb + 2p2). 

Profiles wi th  Three Al le les  

If the profile has alleles abc, then all contributors must be of  
genotype aa, ab, bb, ac, bc, or cc. If  known contributors already 
have alleles abc,  then unknowns need not have any specific alleles 
but cannot have alleles other than abc,  so 

p,.(qblabc) = (p,, + Pb + Pc) z` 

The probability that x unknown contributors have allele a, and 
no allele other than a, b or c, is 

p~.(alabc) = (p, + Pb + p~)Z~ _ (Pb + p~)2x 

When x = 1 this simplifies to p] + 2p,pb + 2pd)o corresponding 
to aa, ab, or ac genotypes. 

The probability that x unknown contributors have alleles ab, 
and no allele other than ab or c, is 

Px(ablabc) = (p,, + Pb + pr _ (Pb + Pc) z~ 

- (p,, + pc)  ~ + p ~  

When x = 1, this simplifies to 2p,,pb as only ab heterozygotes can 
contribute both a and b. 

Finally, i f  there are no known contributors, then all alleles abc  
must be carried by the unknown contributors, which means that 
x >  1, and 

P~(abclabc) = (p~ + Pb + p,.)2x _ (p ,  + pb)2X _ (Pb + p~)2~ 

_ (p,, + pc)2X + p ~  + p~X + p ~ .  

This expression is zero when x = 1, as it is not possible for one 
person to contribute all of  alleles a, b, and c. 

Profiles wi th  F o u r  Al le les  

Similar arguments lead to the four-allele results: 

Px(+labcd) = (p,, + Pb + P~ + Pal) 2x 
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p,.(aIabcd) = (p,  + Pb + p,. + Pd) z` -- (Pl, + t7,. + Pal) z` 

P,.(ablabcd) = (p,, + Pb 4- Pc 4- pal) 2x -- (Pb + P,. + Pal) 2x 

- (p,, + p,. + pd) z" + (p,. + pal) 2~ 

p,.(abclabcd) = (p,, + Pb + P,. + Pal) 2" -- (Pb + P,. + Pal) 2x 

-- (P,, + P; + Pd) 2~ -- (P,  + Pb + Pa) 2x 

+ (p,. + p~)Z~ + (Pb + Pal) 2~ + (P~, + Pal) 2~ 

- p Z ' , x >  1 

p, .(abcdlabcd) = (p,  + Pb + P,. + Pd) 2~ -- (Pb + Pc + Pal) 2~ 

- (p, ,  

- ( p , ,  

+ (pb 

+ (p,, 

_ p2X 

Examples  

+ Pc + Pd) 2x - (P,, + Pb q- Pd) 2x 

+ Pb -I- pc) 2x -I- (p,. + p d )  2x 

+ pd) 2~ + (pb + pc) 2; 

q_ pd)2X + (p~, + p,~)2~ + (p ,  + pb)2~ 

_ p~x _ p~x _ p L  x > a 

These results allow us to return to the examples in Equations 
1 and 2. Setting x = 1 

PI(gP labcd) = (P,~ + Pb + P~, + Pd) 2 

Pl (cdlabcd)  = 2pal) d 

and with x = 2 

P2(cdlabcd) = 2p ,pd[6(p , ,  + pb) 2 + 6(p. + Pb)(P; + Pd) 

+ 2(pc + pal)  2 - -  P,Pd] 

For Equation 1, therefore, 

Po( ~blabcd) 
L -  

PI (cdlabcd) 

1 

2p,pa 

which is just the standard result for the case when all alleles are 
explained by C and there are two alleles, cd, from an unknown 
person under C. 

For Equation 2, 

L - 
P j( dplabcd) 

P2(cdlabcd) 

(P,, + Pl~ + Pc + Pal) 2 

2pd)d[6(p,, + pb) 2 q- 6(Pa + P/,)(P,' + Pa) + 2(pc + pd) 2 -- P,Pd] 

An important feature of  this result is that it is not the reciprocal 
of  the frequency of  the suspect's profile. The analysis of  the mixed 
profile has required the use of  likelihood ratios. 

Profiles with m Alleles  

The general expressions for x contributors when there are three 
or four alleles seem fairly cumbersome, but they follow a pattern. 
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We noticed that a single equation can be given for the probability 
that x unknown contributors have at least the alleles in some set 
of alleles U, but have no alleles not in the mixed-profile allele set 
E. A formal proof of the equation was supplied by C.H. Brenner 
and is contained as Appendix 2 to this paper. The equation is 

P~(UIE) = (To) ~ - ~ ,  (T~) ~ + ~ (T~j,) ~ 
j 2,k 

- ~ ,  (r3j,~,,) 2x + ... (3) 
j,kj 

where To is the sum of probabilities of all alleles in E, T~ is the 
sum of probabilities of all alleles in E except for the jth allele in 
U, T2j.k is the sum of probabilities of all alleles in E except for the 
jth and kth alleles of U, and so on. Such equations are useful for 
constructing computer programs, and we give instructions below 
for obtaining such a program. However, the explicit results we list 
in Appendix 1 will generally be sufficient. 

As an illustration of the use of Appendix 1, suppose an eviden- 
tiary sample E has only three alleles abe  and includes contributions 
from a victim and a perpetrator. If the victim has genotype ab and 
a suspect has profile aa,  then the explanation C including the 
suspect still requires unknown contributors for allele c. The alterna- 
tive explanation C may still include the victim but excludes the 
suspect, and so includes some unknown contributors. If the circum- 
stances of the crime specify that there were three contributors, 

Pl (c labc )  
t - - -  

P2(clabc)  

pc(2p.  + 2po + pc) 

(P, + Pb + p,.)4 _ (p, + pb)4 

Pc 
(4) 

(1), + Pb + Pc) 2 + (P, + Pb) 2 

Number of Contributors 

The results give so far depend on the number of contributors 
to the mixed sample. Sometimes the circumstances of the crime 
will dictate that number, and the forensic scientist must use that 
number in the numerical analysis. Other times, the number may 
not be known but the presence of more than two alleles at a locus 
implies that there was more than one contributor. However, if all 
the loci in the profile had no more than four alleles, but these loci 
had more than four alleles in the population, an argument could 
be made that explanations with other than two contributors may 
safely be ignored. Other situations that may indicate the number 
of contributors are when a mixed stain occurs amongst a collection 
of single-contributor stains. 

Whenever there is doubt as to the number of contributors, there 
can be considerable variation in the likelihood ratio. The issue has 
been discussed in some detail by C.H. Brenner, R. Fimmers and 
M. Baur (submitted, personal communication from C.H. Brenner). 
For loci with more alleles than are present in the sample profile, 
so that the sum of probabilities of those alleles is less than one, 
larger numbers of unknown people make Px(UIE) smaller--it 
becomes increasingly difficult for a large number of people to 
have only the sample alleles between them. This result also follows 
from Equation 3, since To < 1 means that Px(UIE) ~ 0 as x 
increases. If the numerator of the likelihood ratio is fixed, the 
stronger is the evidence against the suspects included under C as 

the number of contributors increases. Conversely, smaller x values 
for the denominator will make the likelihood ratio smaller and 
will weaken the evidence against suspects included under C but 
not C. 

When all the alleles at a locus are present in the evidentiary 
sample, however, an increased number of contributors makes the 
profile more likely. It becomes easier for large numbers of people 
to have all the alleles at the locus between them. Equation 3 now 
shows that Px(UIE)--"  1 as x increases since To = 1. The likelihood 
ratio is now smaller for larger x values. 

These results on the effect ofx on Px(UIE)  are strictly true only 
when x is large and may not hold for small x. Care is needed, and 
it is advisable to obtain numerical values for several values of x. 

E x a m p l e s  

We now show the effects of both the numbers of contributors 
and the profiles of specific people, by considering an example of a 
rape case (R. Cotton, personal communication). The Polymarker TM 

profile from a vaginal swab, as well as profiles from the victim 
and a suspect, are shown in Table 1, along with some allele frequen- 
cies used for illustrative purposes. Both the victim and the suspect 
profiles are included in the evidence profile. 

If the two explanations for this evidence are: 

C: Contributors were the victim and the suspect, 
C: Contributors were the victim and an unknown person. 

then the evidence is certain under C. The probabilities under 
are shown in Table 2, and the likelihood ratio is 8.9. 

Evidence from a rape case may be collected from somewhere 
other than victim's body, and explanation C may then be that both 
contributors are unknown. With C still that the evidence is from 
the victim and the suspect, the probabilities are as shown in Table 
3. The likelihood ratio is now 46.6, and has increased because of 
the larger number of unknowns in the denominator. The evidence 
did not contain all the alleles at each locus. 

Finally, consider the case where the evidence in Table 1 is 
known to be from two perpetrators, but only one (the "suspect" 
of Table 1) is known. The evidence is no longer regarded as being 

TABLE 1--Polymarker  T M  example. 

Profile LDLR GYPA HBGG D7S8 Gc 

Evidence B AB AB AB ABC 
Victim B AB AB AB AC 
Suspect B A A A B 
PA 0.538 0.566 0.543 0.253 
PH 0.567 0.462 0.429 0.457 0.195 
PC 0.552 

TABLE 2--Calculat ions for  rape case, one unknown. 

Pr(EIC) Pr(EIC) 

LDLR 1 P~(BIB) = p}r 0.321 
GYPA I Pi(~ blAB) = (Pa + PI~) 2 1.000 
HBGG 1 P~(cblAB) = (PA + pz~)2 0.990 
D7S8 I PI(cblAB) = (PA + PB) 2 1.000 
Gc 1 PI(BIABC) = PI~(P*~ + 2pa + 2pc) 0.352 



TABLE 3--Calculations for  rape case, two unknowns. 

Pr(EIC) Pr(EIC') 

LDLR 1 

GYPA 1 

HBGG 1 

D7S8 1 

Gc 1 

ei(BrB) = p4 0.103 

P2(ABIAB) = (PA + PB) 4 -- PA 4 -- p4 0.871 

P2(ABIAB) = (PA ~- P B )  4 - -  p4 _ p4 0.843 

P2(ABIAB)  = (PA + P B )  4 - -  P~ - p4 0.869 

P2(ABCIABC) = 12pApepc(p A + PB + PC) 0.327 

from a rape case and the "victim" profile in Table 1 is ignored. 
The two explanations are now: 

C: Contributors were the suspect and an unknown, 
C: Contributors were both unknown. 

The evidence is not certain under either C or C, and the probabili- 
ties are shown in Table 4. For four of the five loci, the evidence 
is more likely under C than under C. It is more likely that two 
people will carry alleles AB at GYPA between them, for example, 
than it is for a single person to carry only allele B. The likelihood 
ratio is less than one for these loci, although it is 1.1 for all 
five loci combined. Simply considering the frequency of included 
people, at loci other than LDLR, would give a frequency of 1.0 
and would imply no probative value of the evidence, whereas the 
evidence at these four loci is actually favorable to the suspect. 
The presence of alleles from an unknown person has weakened 
the evidence against the suspect. 

Profiles with Unseen Alleles 

Adding  Nul l  Al lele  

An RFLP locus can give rise to a single band c on an electropho- 
retic gel if it is homozygous cc, or if it is heterozygous cn for c 
and some unseen allele n. Such an unseen allele may need to be 
added to profiles of people for whom only one band is seen, \p~qd 
then also added to mixture profiles to which that person is supp0~ed 
to have contributed. ~',,~' 

For example, suppose the evidentiary sample has profil+ abc, 
the victim has type ab and a suspect has type c. If it is appropriate 
to assume the existence of unseen bands, the suspect's profile 
could be cc or cn and the sample profile abc or abcn. In either 
case, the evidence is certain under explanation C that the contribu- 

TABLE 4--Calculations for  one or two unknowns. 

Pr(EI C) Pr(EIC) 

LDLR Pt(~blB) = 0.321 P2(BIB) = 0.103 
GYPA PI(BIAB) = 0.711 P2(ABIAB) = 0.871 
HBGG Pj(BIAB) = 0.670 P2(ABIAB) = 0.843 
D7S8 P1(BIAB) = 0.705 P2(ABIAB) = 0.869 
Gc PI(ACIABC) = 0.215 P~(ABCIABC) = 0.327 
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tors were the victim and suspect. However, if C includes the victim 
but excludes the suspect, the unknown contributor of allele c must 
possess allele c and not possess an allele, other than a or b, that 
would be "seen." The possible genotypes for this person are ac, 

bc, cc, or nc and 

1 
L -  

Pl(clabcn)  

1 

pc(Zp. + 2pb + 2p. + pc) 

Estimates of null  frequencies have all been less than 0.05 (Chakra- 
borty et al., 1994). 

Although null alleles require care, the machinery previously 
established is adequate provided the null n is added to the eviden- 
tiary profile. It need not appear in the set U in the expression 
Px(UIE). 

The "2p"  Rule  

For the interpretation of single-contributor stains, it is customary 
to estimate the frequency of single-band VNTR patterns as twice 
the frequency assigned to that band. If the frequency of allele a 
is p, ,  then the total frequency of individuals showing only that 
allele is p2 + 2pop, where n is the possible unseen allele. The 
customary rule is the conservative replacement of this expression 
by 2p~, and the National Research Council  (1996) recommends 
the same procedure for mixed stains. The general expression for 
the probabilities Px(UIE) can be modified to accommodate this 
rule, and we begin with some examples. Once the possibility of 
single bands is allowed for alleles from known contributors, we 
allow it for all contributors (and all alleles). 

For a profile with two alleles, ab, contributors must be a*, b* 
or ab where a* or b* means individuals showing only allele a or 
b. They may be homozygotes or heterozygotes for an unseen allele, 
and are assigned a frequency of 2p~ or 2pb. In the same notation 
as before 

Pl(alab) = 2pa + 2papb 

= 2[(pa + Pb + PoPb) -- Pb] 

with a generalization to x contributors of 

Px(alab) = 2X[(pa + Pb + PoPb) x -- P~b] 

For a profile with three alleles, abc, contributors must be a*, 
b*, c*, ab, ac, or bc. For two contributors to have at least ab but 
no more than abc between them, the possibilities are a* with b*, 
ab or bc; and b* with ab or ac; and ab with c*, ab, ac or bc; and 
ac with bc. Therefore 

P2(ablabc) = 4pa(2pb + 2p,pb + 2pbpc) + 4pb(2poPb + 2pope) 

+ 4popb(2pc + popb + 2popc + 2pbpc) + 8p.pbp~ 

= 4[(p, + Pb + Pc + P~Pb + PaPc + PbPc) 2 

-- (Pb + Pc + PbPc) 2 -- (P, + Pc + PaPc) 2 + Pc 2] 

with a generalization to x contributors of 
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T A B L E  5--Two-contributor examples from 1996 NRC Report. The contributors a__re the suspect and one unknown person under C, and two 
unknown people under C. 

L i k e l i h o o d  Ra t io  

E S u s p e c t  G e n e r a l  p2 2p  

abcd ab P l ( cdlabcd) 

P2(abcdlabcd) 

abc bc Pt (alabc) 

P2(abclabc) 

abc a Pt (bclabc) 

ab ab 

ab a 

P2(abclabc) 

Pt(d~lab) 

P2(ablab) 

Pl(blab) 

P2(ablab) 

1 1 

12pd~b 12popb 

po + Zp~ + Zpc 

12pbp~(p~ + Pb + P~) 

1 

6p~(po + pb + p3  

(p~ + pb) 2 

2poPb(2p, 2, + 3poPb + 2 p  2) 

2p~ + P b  

2p.(Zp] + 3popb + 2p~) 

1 +Pb +Pc 

4pbpc(3 + p ,  + Pb + Pc) 

1 

4p~(3 + p~ + Pb + Pc) 

Pa + Pb + Pd~b 
2popb(2 + 2pa + 2p~ + poph) 

1 + P a  

2pa(2 + 2p~ + Pr, + PoPD 

T A B L E  6--Calculations for a three-allele VNTR mixed profile. Under C, the known contributors have all three alleles abc. Under -C all 
contributors are unknown. 

No. 
u n k n o w n s  

u n d e r  C 

No.  o f  u n k n o w n s  u n d e r  C 

0 1 2 

2 p2 Po(+labc) P l(~blabc) P2(qblabc) 
- 1 ,620  = 7 0  3 

P2(abclabc) P2(abclabc) P2(abclabc) 

2p Po(qblabc) P l(dplabc) P2(~blabc) 
158 - 7 0  - 31 

P 2( abclabc ) P 2( abclabc ) P2( abclabc ) 

Po(+labcn) Pt(qblabcn) P2(~blabcn) 
- 3 , 3 8 0  = 2 2 6  - 15 

P2(abclabcn) P2(abclabcn) P2(abclabcn) 

3 p2 po(qblabc) P l(+labc) P2(qblabc) 
- 2 1 , 6 0 0  - 9 3 8  41 

P3(abclabc) P3(abclabc) P3(abclabc) 

2p Po(qblabc) P l(+labc) P2(~blabc) 
5 4  = 24  11 

P 3( abc l abc ) P 3( abc l abc ) P 3( abc l abc ) 

Po(q blabcn) P i (qblabcn) P2(~blabcn) 
- 12 ,300  = 823  - 55 

P 3( abc labcn ) P 3( abclabcn ) P 3( abclabcn ) 

4 p2 po(~b[abc) pi(dplabc) p2(~blabc) 
- 3 9 6 , 0 0 0  = 17 ,200  - 7 4 8  

P4(abclabc) P4(abdabc) P4(abclabc) 

2p Po(+labc) Pl(~blabc) P2(~blabc) 
- 8 3 0  - 13 

P4(abclabc) P4(abclabc) P4(abclabc) 

Po(~blabcn) Pl(~blabcn) P2(~blabcn) 
- 108 ,000  7 , 2 5 0  = 4 8 3  

P 4( abc labcn ) P 4( abcl abcn ) P 4( abclabcn ) 
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p,(ablabc) = 2'[(p,, + Pl, + P,. + P,,Pl, + P,d~,. + Pl,P,)' 

- (p~, + p,. + p~,p, .y - (p,, + p,. + p , g , . y  + p~.] 

The "2p" modification of Equation 3, for x unknowns having 
at least the alleles in U but no alleles not in E, is 

p,(UIE) = 2'[(S0)'  - ~] (Sb)X + ~] (S2i,k) ~ -  ~ ($31.LI) ...... ] 
J j ,k  j,k,l 

where So is the sum of all the probabilities of the alleles in E plus 
the sum of all the products of pairs of frequencies for alleles in 
E. Term Slj is So with all the terms involving the jth allele of U 
removed, S2i.k is So with all the terms involving the j th and kth 
alleles in U removed, and so on. To see why this result holds, 
note that So is the square of the sum of the frequencies of all the 
alleles in E, with each squared frequency (p2) replaced by twice 
that frequency (2p). The most common examples are shown in 
Appendix 1, and in Table 5 we confirm the results given by the 
National Research Council (1996). We adopt the language of that 
report in writing ,,p2,, for calculations where unseen bands are not 
an issue, and "2p" where single band profiles are given twice the 
frequency of the band that is seen. It must be pointed out that the 
"2p" rule cannot be used for loci with few alleles when So is 
greater than one. 

A comparison of the unseen-allele and the "2p" approaches is 
afforded by a three-band profile abc at D2S44 recovered from the 
center console of an automobile owned by the defendant in the 
case of People v. Simpson (Los Angeles County Case BA097211). 
This profile included the profile ab of the defendant OS and the 
profile ac of a victim RG (it did not include a second victim NB). 
Some frequencies for illustrative purposes are p~, = 0.0316, Pb = 
0.0842, Pc = 0.0926. Three sets of calculations are laid out in 
Table 6: The possibility of unseen alleles could be ignored, an 
unseen allele (with frequency 0.05) could be allowed, or the "2p" 
rule could be used. In this instance, the court ordered that the 
number of contributors to the evidence profile be set to two, three 
or four. The "2p" rule is not always conservative, and we suggest 
caution in its use. 

Discussion 

The interpretation of mixed stains is straightforward in the likeli- 
hood ratio context. Alternative explanations for the mixed stain 
profiles need to be specified, and then compared on the basis of 
the probabilities of the profile under those explanations. Calcula- 
tions that consider only single contributors are without a logical 
foundation. The 1992 report of the United States National Research 

Council recommended "If a suspect's pattern is found within the 
mixed pattern, the appropriate frequency to assign such a 'match' 
is the sum of frequencies of all the genotypes that are contained 
within (i.e., that are a subset of) the mixed pattern." We have 
shown by example that this method is not helpful, and may even 
be prejudicial. Indeed, the 1996 National Research Council report 
repudiates the 1992 recommendation: "This calculation is hard to 
justify, because it does not make use of some of the information 
available, namely, the genotype of the suspect. The correct proce- 
dure, we believe, was described by Evett et al. (1991)." 

A program to calculate the likelihood ratio for mixed stains, for 
.a range of numbers of unknown contributors under both C and C, 
can be obtained from the senior author. (e-mail address: weir@nc- 
su.stat.edu or World Wide Web URL: http://www2.ncsu.edu/ 
ncsu.CIL/stat___genetics/). 
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APPENDIX I I S P E C I A L  CASES 

One allele 

Two alleles 

p2 rule 

p2 rule 2p rule 

P~(+la) = P~(ala) pax 2;~p~ 

2p rule 

Px(+lab) (p. + pb) 2x 

Pl(alab) 
P2(alab) 
P~(alab) 

Pl(ablab) 
P2(ablab) 
P~(ablab) 

Three alleles 

Pxqblabc ) p2 
2p 

Pl(alabc) p2 

2p 
P~(alabc) p2 

2p 

P l ( ab labc ) p2 
2p 

P2(ablabc) p2 
2p 

P~(ablabc) p2 

2p 

Pl(abclabc) p2 

2p 
P2(abclabc) p2 

21:, 
PAabclabc) p2 

Four alleles 

P~(+labcd) 

p.(p,~ + 2pO 
p,,(p3 + 4p2w~ + 6p~p{ + p~) 
(p~ + pb) z~ - p~ 

2p~pb 
2p.pb(2p ] + 3popb + 2p 2) 
(p.  + pO~- _ p]~ _ p2X 

2p 

p2 

2p 

P l ( alabcd) p2 

2e 
pdalabcd) p2 

2p 

U(p~ + Pb + P.Pv) ~ 

2p.(1 + pO 
4p.(1 + pb)(p~ + p.pb + 2pb) 
2X[(p. + pb + p o p J  - ~ ]  

2pd~b 
4p.pb(2 + 2p~ + 2pb + P~b) 
U[(p,, + Pb + P d ~ Y  -- lf. -- lye] 

(P. + Pb + Pc) 2x 
2X(pa + Pb + Pc + poPb + P.P~Y 

po(p,, + 2pb + 2pc) 
2p.(1 + Pb + P,,) 
(P~ + Pb + p~.)2~ _ (Pb + PD z~ 
U[(p. + Pb + P; + P~Pb + p .pc  + PbPcY -- (Pb + P; + PhP,')q 

2pdJh 
2p dJ~ 
2popb[2(p~ + pb) 2 q- 6pc(Pa + Pb) + 6132 -- PoPb] 

4paPb(pap b -{- 2 + p .  + Pb) q" 8p,~pbp,.(3 + p .  + Pb q- P~) 
(Pa + Pb + Pc') 2x -- (Pb q- Pc) 2x -- (Pa + Pc) 2x + p2X 

U[(p~ + Pb + P; + P.Pb + PoPe + PbPcY 
- (Pb + Pc + PbP,.)* -- (P~ + P,. + P~P,.)* + ~ ]  

0 
0 

12p~pbp~.(p. + Pb + P~) 
8p~'~,p~.(3 + p~ + Ph + P~') 
(Pa + Pb q- p~)2x __ (Pb + Pc) zx -- (Pa + Pc) 2x 

-- (p.  + pb) 2~ + p]* + p~ + p~* 

2X[(P. + Pb + P; + P~Ph + P~P; + PbP,'Y 

(P. + Pb + P,. + Pd) 2x 
U(p.  + Pb + P,' + Pd q- P.Pt; + P.P; + PdOd q- PhP,- + Pl,Pd + P, Pd) 2X 

p.(p. + 2p. + 2p,. + 2p.) 
2.o.(1 + Pb q- Pc + Pd) 
(Pa q- P# + Pc q- Pal) 2x -- (Ph + Pc q- Pal) 2x 

2~[(P. + Pb + P; + Pd + Pal&, + P.P, + P.Pd + P~,P,' + P~,Pd + P, Pd) x 
-- (Pt, + P,. + Pd + PbP, + P~,Pd + P, Pd)q 



Pi(abclabcd) p2 

2p 
P~(ablabcd) p2 

P~(ablabcd) 2p 

P labclabcd) p2 

2p 
P2(abclabcd) p2 

2p 
P~(abclabcd) p2 

2p 

Pl(abcd/abcd) p2 

2p 
Pe(abcd/abcd) p2 

2p 
P:~(abcd/abcd) p2 
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2P~dTt~ 
2p.pb 

(P. + Pb + P,  + Pa) 2x - (Pb + P~. +Pd)  2x - (P. + Pc + Pa) zr + (pc + Pd) zr 

U[(p,, + Pb + P~. + P d  + pdgb + Pd~. + PaP~ + PbP,. + PbPd + P~-Pd) x 
-- (Pb + Pc + Pd + PbPc + PbPd + P~Pd) x 
-- (12, + Pc + P d  + pd~. + pd~a + p,pa) ~ + (pc + P d  + P~Pd)q 

0 
0 

12pd~bPc(P~, + Pb + P~" + 2pd) 
8p,~Gpc(3 + p~ + Pb + P,' + 3pd) 
(P~ + Pb + Pc + Pa) 2~ -- (Pb + Pc + Pa) z~ -- (P, + Pc + Pal) 2x 

- (P,, + Pb + Pal) 2x + (Pc, + Pal) 2x + (pb + Pal) 2x + (pa + Pal) 2x -- pZ* 

2x[(p, + Pb + Pc + Pd + P,Pb + PoPe + P,,Pd + Pt,Pc + PbP~ + PcPa) x 
- (Pb + Pc + P d +  PbPc + PbPd + PLPd) x 
-- (P, + Pc + P d  + P~Pc + PaPal + P~Pd) ~ 
-- (P~ + Pb + P d  + PoPb + PoPd + P b P J  
+ (Pc + P d +  P,Pd) x + (Pa + P d +  PoPd) x + (Pb + P d  + PbPd) ~ -- lYd 

0 
0 
24paPbp~Pd 
24paPbP~Pd 
(Pa + Pb + Pc + Pal) 2~ 

-- (Pb + Pc + Pd) 2x -- (Pa + Pc +Pd)  2x -- (Pa + Pb +Pd)  2'c 

- (P, + Pb + Pc) 2~ + (Pc + Pal) 2x + (PO + Pa) z~ + (Pb + pr 
+ (P,, + Pal) 2x + (Pa + Pc) 2x + (P,, + Pb) 2~ 
_ p]X _ p2X _ pcZX _ p ~  

2;([(P,, + Pb + Pc + P d +  pd)b + p,,pc + PaPa + PbPc + PbPd + PcPd) x 
-- (Pb + Pc + P d  + PbPc + PbPd + PcPd) x 
-- (P. + P~ + P d +  PoPc + P,.,Pd + PcPd) x 
-- (Pa + Pb + P d  + pd~b + PoPd + P b P J  
- (P~, + Pb + Pc + pd~b + p~p~ + p t p c )  x + (Pc + P d +  PcPd) x 

+ (pa + P d  + PoPa) ~ + (Pb + P d  + P ~ P J  
+ (P~ + Pb + P~Pb) ~ + (P, + Pc + P o P J  + (Pb + Pc + PbPc) ~ 

APPENDIX 2 - - P R O O F  OF A MIXED 
STAIN F O R M U L A  OF WEIR 1 

The genetic markers ("alleles") of an evidence stain may be 
identical to the alleles of a reference sample (such as a suspect 
for example). The likelihood ratio for the evidentiary strength 
favoring association is then simply the inverse of the profile fre- 
quency. However, the evidence stain is often complicated by the 
presence of additional alleles, variously from additional known or 
unknown suspects or victims. The likelihood ratio is clearly more 
complicated in such cases, but Weir et al. (1997) present in the 
foregoing paper without proof a general and elegant formula for 
the probabilities that occur as numerator or denominator. In this 
appendix, we give a proof. 

Received 24 May 1996; and in revised form 7 Aug. 1996; accepted 9 
Aug. 1996. 

~Charles H. Brenner, Ph.D., Forensic Consultant in Mathematics, Berke- 
ley, CA 94709. 

Notation 

Let E be the set of alleles observed in the evidence for some 
discrete-allele system. Of these some may be attributable to known 
parties; the remainder U C E are to be explained by x people with 
two alleles (not necessarily distinct) each. Explained means that 
U C X C E, where X is the set of all alleles in the x people. More 
generally for a subset S C U, we will say that people with alleles 
X exactly explain S if X C E and X f3 U = S, or equivalently, 
putting W = /_AS, if UkW C X C E~W. 

The set-notation symbols are to be understood according to the 
standard conventions: U C E means that the alleles U are among 
those of E, including the possibility that U = E. X 71 U is the 
intersection--the set of alleles that are both in X and in U. ~ is 
the set difference--the set of  alleles that are in U excluding those 
that are also in S. The cardinality (size, in number  of alleles) of 
a set J is written IJ[. The symbol E denotes membership; j ~ U 
means that j is an allele of the set U. 

Following Weir et al. we write Px(UIE) for the probability that 
x random people explain U. Let J, J C U be a set of  alleles. We 
will be interested in sets of people who omit the set J. Let 

Tins = the total of the frequencies of the alleles in E\J.  (1) 
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Theorem 

Weir discovered that 

E r L  E e ~ ( u l ~  = To ~ - ~ ,  r , ,  - T3,,~,, + . . . .  (2) 
j E U  j , j e U  j,k,IEU 

but did not supply a proof. 

Proof  

A proof seems worthwhile. The general idea is clear e n o u g h - -  
(2) is an instance of the principle of inclusion and exclusion (Hall, 
1967). From the definition (1) and the assumption of a discrete 
allele system, T~mg is the probability that x people's alleles are all 
in E\J.  As the basis for the inclusion-exclusion analysis, we 
note that 

T~X~ = ~ w  Px(U\WIE\W) (3) 
JCWCU 

because any set of people Whose alleles are among Ek/exac t ly  
explains some one and only one subset, U\W, of U\J.  The summa- 
tion is taken over all sets of alleles W that satisfy J C W C U. 
Introduction of the sets W, as a means of effectively classifying 
the various positive and negative contributions to the sum in (2), 
is the key idea in the proof. 

Define 

Q,, = ~ , j  T,~ s (4) 
JCU 
IJI =m 

In this notation, (2) is expressed as 

Px(UIE) = Qo - QI + Q2 - + "". (5) 

Summing (3) for fixed m over all sets J C U of cardinality m we 
obtain from (4) 

Qm = ~ z  ~ w  p~(U\WIE\W) (6) 
JCU JCWCU 
Ul=m 

= ~ .... ~ w  ~,g P,.(U\WIE\W} (7) 
WCU JCW 

= ~ .... ~ ,w Px(UkWIEkW) E J  1 (8) 
WCU JCW 
I WI =k IJI =m 

(m = ~,k .... ~ w  P,.(UXWIEXW) . (9) 
WC U 
IWl=k 

On the right hand side of line (6), each W occurs many times, 
once for each J of which it is a superset. The object is to count 
how many times. Classifying the W's according to their size k on 
line (7), we see on (8) that it is the same as the number  of m allele 
subsets of a k-set, which is exactly the definition of the binomial  
symbol (~). Hence line (9). 

To verify (5) form now the alternating sum over m, where the 
sum runs to n = I UI, 

Qo - QI + Q2 - -k- .-. 

: E'm:0 (--1)mere 

= E n m = 0  ( - - 1 )  m E k = m  E W  P x ( U \ W ] E \ W )  
w c u  
IWl=k 

= ~ = o  ~w Px(U\W~E\W) ~ m : o  ( - 1 )  m - 
WCU 
IWl=k 

(1o) 

(1i)  

As line (10) shows the same set W may occur in several Qm terms. 
To compute the net contribution due to each W, it is natural to 
reverse the order of summation so that the classification is on W 
first and then on m, which is formula (11). To verify the transition 
from (10) to (11) note that the index sets of the double summations 
Em=O" E~=,,, and Y'k=0n "~'m=0k range over the same pairs (k, m ) - -  
namely the triangular array where 0 --< m <-- k -< n. 

Hence the net number of times that a contribution from each 
set W is included and excluded is given by the last factor in (11). 
That factor is simply unity when k = 0, and when k > 0 is it 
even simpler, for by the binomial theorem Ekm=0( - 1)m(,k,) = (1 -- 
t) k = 0. So 

Qo - Qi + Q2 - + . . . .  p~(UIE) 

tl 
+ ~,~=~ ~ , w  Px(U\WIF. \W)"  o 

WCU 
I WI : k 

= P~(UIE), Q.E.D. 
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