ELEMENTAL ANALYSIS OF GLASS BY LA-ICP-OES FOR FORENSIC DISCRIMINATION PURPOSES

Emily R. Schenk, B.S., and Jose R. Almirall, Ph.D

Department of Chemistry and Biochemistry and the International Forensic Research Institute

Florida International University Miami, FL 33199

2011 Trace Evidence Symposium Kansas City, Missouri August 8 – 11, 2011

International Forensic Research Institute

SWGMAT GUIDELINES

"The discrimination potential of element concentrations in glass was documented as early as 1973. Several instrumental methods have been used by forensic scientists"

"Elemental analysis methods are used when other methods of comparison fail to distinguish two glass fragments as having different sources..."

- Elemental Analysis of Glass, *Forensic Science Communications*, vol. 7, no. 1, 2005.

OUTLINE

- Research motivation
- Instrumentation
- Experimental parameters
- Analytical performance
- Test set of automotive glass samples
- Conclusions

RESEARCH MOTIVATION

Current elemental analysis techniques:

Solution-based sampling:

- **1. ICP-OES** (Koons et al, 1988)
- **2. ICP-MS** (S. Montero et al., 2001) ASTM E 2330-04

Solid sampling:

- 1. SEM-EDS (Ryland, 1986
- 2. XRF (Reeve et al, 1976
- **3.** LA-ICP-MS (Latzchoczy et al, 2005)
- 4. LA-ICP-OES

Advantages:

- 1. Reduced cost
- 2. Reduced complexity
- 3. Sensitivity
- 4. Reduced sample consumption

Characteristics of a "good" technique:

- 1. Detection limits ~ 10x expected concentration
- 2. Quantitative analysis
- 3. Precision adequate for the intended purpose
- 4. Accuracy adequate for the intended purpose

COUPLING THE TECHNIQUES

Laser ablation process

Excitation, ionization and emission processes

Resulting emission line

INSTRUMENTATION

Obtaining a transient signal

INSTRUMENTATION

INSTRUMENTATION

EXPERIMENTAL PARAMETERS

Argon

ICP-OES Parameters, PerkinElmer Optima DV7300

Outer plasma gas : 15 L/min

Auxiliary plasma gas : 0.5L/min

Makeup gas : 0.5L/min

Forward power : 1500 W

Read parameters : 0.1 s integration, 1 s read time

Laser Parameters, New Wave Research Inc., UP-213

Wavelength : 213 nm, 4 ns pulse duration

Fluence : 24 J/cm²

Frequency : 10 Hz

Ablation cell volume : 30 cm³

Ablation mode : 100 µm spot, 60 s ablation

ICP and torch layout

Courtesy of PerkinElmer ICP Guide

METHODOLOGY

Emission lines of interest :

Element	Wavelength (nm)
Al (I)	396.15
Ba (II)	455.40
Ca (II)	315.88
Fe (II)	238.20
Li (I)	670.78
Mg (I)	285.21
Sr (II)	407.77
Ti (II)	368.51
Zr (II)	343.82
Si (I) (Internal std)	221.66

Establishing a calibration using NIST glass standards

LIMITS OF DETECTION

Emission line (nm)	Limit of detection	Limit of quantitation	Typical sample	
	(µg g ⁻¹)	(µg g ⁻¹)	Range (µg g ⁻¹)	
Al I 396.15	3.6	12.1	298-11,940 ^a	
Ba II 455.40	0.6	1.7	3-384 ^b	
Ca II 315.88	559	1862	46,086-69,767 ^b	
Fe II 238.20	13.1	39.3	461-6063 ^a	
Li I 670.78	0.38	1.31	0.8-7.0 ^a	
Mg I 285.21	8.1	26.9	6273-51,076 ^b	
Sr II 407.77	0.2	0.7	19-576 ^b	
Ti II 368.51	6.9	23.1	39-3226 ^b	
Zr II 343.82	7.1	22.3	19-269 ^b	

^a Determined from actual measurements made of 127 soda-lime glass samples consisting of vehicle and architectural windows.

^b Determined from actual measurements made of 286 soda-lime glass samples from vehicle and architectural windows.

ANALYTICAL FIGURES OF MERIT

Comparison of LA-ICP-OES and LA-ICP-MS using NIST 1831

Analyte information		LA-ICP-OES			LA-ICP-MS		
	Reported value	Average	Bias	Precision	Average	Bias	Precision
Element	$(\mu g \ g^{-1})$	(µg g ⁻¹)	(%)	(%)	(µg g ⁻¹)	(%)	(%)
Al	6381 ^a	6232	-2.3	1.4	6828	7.0	12.0
Ca	58604 ^a	58020	-1.0	1.8	58391	-0.4	2.6
Mg	21166 ^a	21177	0.1	1.1	25809	21.9	6.5
Ti	114 ^a	108	-5.3	6.6	135.5	18.9	15.0
Ba	31.5 ^b	29.1	-7.6	3.0	29.1	-7.6	3.5
Sr	89.1 ^b	85.9	-3.6	6.6	75.9	-14.8	2.4
Zr	43.4 ^b	37.5	-13.6	9.5	31.3	-28.3	2.3
Fe	610 ^c	581	-4.8	2.8	530	-13.1	12.4
Li	4.99 ^c	5.21	4.5	6.8	5.13	2.8	2.9

^a Certified by NIST

^b Reported in ASTM method E 2330-04, not certified

^c Historical data from a single lab over a one year period

*Bias and precision measurements obtained from 20 readings over approximately 2 months

DESCRIPTION OF TEST SET

- Automobile glass from vehicles produced 1995-2004
- 41 glass fragments from 14 vehicles
 - Windshield (inner and outer)
 - Side windows (tempered)
 - Rear windows (tempered)
- Analyzed by LA-ICP-OES using a 9 element menu
- Analyzed by other techniques
 - LA-ICP-MS
 - µXRF
 - LIBS

The performance of LA-ICP-OES using this test set allows for a direct evaluation of the **analytical capabilities** and **informing power** that can be obtained in comparison to other elemental analysis techniques.

TEST SET – STATISTICAL ANALYSIS

Initial data analysis

- 1. ANOVA with Tukey's, followed by a t-test ($\alpha = 0.05$) for indistinguishable pairs by ANOVA+Tukey's
 - LA-ICP-OES, LA-ICP-MS¹, μXRF¹, LIBS¹

Additional data analysis

- 2. Broader match criteria
 - LA-ICP-OES and LA-ICP-MS
 - Standard deviation
 - +/- 3
 - +/- 4

TEST SET – INTERPRETATION

Definition of a source

1. Glass originating from the same pane

<u>or</u>

2. Glass originating from the same manufacturing plant around the same time

Type I Error : False exclusion

Distinguishing samples thought to originate from the same source

Example : inner and outer windshields from the same vehicle not being associated

Type II Error : False inclusion

Associating samples known to originate from different sources

Example : side and rear windows from two different vehicles being associated

LA-ICP-OES Glass Data Statistical Comparisons

Pair #	Vehicle make	Vehicle model	Year	Sample location	IN by Pairwise/ t-test (9 ele)	IN by +/- 4s (9 ele)	IN Hotelling's T ² (8 ele)	
1	Chevrolet	Cavalier	2004	outside windshield	Vac	Vas	Ves	
l	Chevrolet	Cavalier	2004	inside windshield	105	105	105	
2	Dodge	Stratus	1998	outside windshield	Vac	Vac	Vac	Veg
4	Dodge	Stratus	1998	inside windshield	105	105	105	
3	Ford	Expedition	2004	inside windshield	Vac	Vac	Veg	
5	Ford	Expedition	2004	outside windshield	105	105	105	
Δ	Jeep	Grd. Cher.	2001	outside windshield	Vas	Vec	No – Type I	
7	Jeep	Grd. Cher.	2001	inside windshield	105	ies	Error	
5	GMC	Envoy	2004	outside windshield	No – Type I	No – Type I	No – Type I	
3	GMC	Envoy	2004	inside windshield	Error	Error	Error	
6	Oldsmobile	Intrigue	1998	outside windshield	No – Type I	Vac	Vec	
U	Oldsmobile	Intrigue	1998	inside windshield	Error	105	105	
7	Dodge	Neon	2000	outside windshield	No – Type I	Vac	Vec	
/	Dodge	Neon	2000	inside windshield	Error	105	105	
Q	Chevrolet	Cavalier	2003	outside windshield	No – Type I	Voc	Vec	
0	Chevrolet	Cavalier	2003	inside windshield	Error	105	105	
0	Ford	Explorer	2001	outside windshield	No – Type I	No – Type I	No – Type I	
9	Ford	Explorer	2001	inside windshield	Error	Error	Error	
10	Jeep	Grd. Cher. Laredo	2001	outside windshield	No – Type I	No – Type I	Vor	
10	Jeep	Grd. Cher. Laredo	2001	inside windshield	Error	Error	105	
11	Ford	Ranger XLT	2001	outside windshield	No – Type I	Vac	Vor	
11	Ford	Ranger XLT	2001	inside windshield	Error	105	105	
12	Chevrolet	Cavalier	2003	Side window	No	Yes – Type	Yes – Type	
12	Chevrolet	Cavalier	2003	Rear window	NO	II Error ??	II Error ??	
13	Chevrolet	Cavalier	2004	Side window	No	Yes – Type	Yes – Type	
	Chevrolet	Cavalier	2004	Rear window	INO	II Error ??	II Error ??	

LA-ICP-OES VS LA-ICP-MS

Comparison of broader match criteria

Inner and outer windshield from the **same** vehicle **should** be associated but are **not**

Side and rear window from the **same** vehicle **are** associated

	False e	xclusions	False inclusions				
	Same	vehicle	Different vehicle Same vehicle				
	+/- 3 s	+/- 4s	+/- 3s	+/ - 4s	+/- 3s	+/- 4s	
LA-ICP-OES	3	3	0	0	2	2	
LA-ICP-MS	5 4		0	0	2	2	
Overlap of pairs				Same pairs			

WHAT DOES THIS MEAN?

LA-ICP-OES

LA-ICP-MS

Technique	Type 1 Errors		Type I Error Rate		Type 2 Errors		Type II Error rate	
Pairwise/ t-test	8	7	1 %	0.9 %	0	0	0	0
+/ - 3s	3	5	0.4 %	0.6 %	2	2	0.2 %	0.2 %
+/- 4s	3	4	0.4 %	0.5 %	2	2	0.2 %	0.2 %
Hotelling's	3	-	0.4 %	-	2		0.2%	-

Definition of a source

or

1. Glass originating from the same pane

. Glass originating from the same manufacturing plant around the same time

SUMMARY

- LA-ICP-OES is capable of achieving similar analytical performance to LA-ICP-MS.
- LA-ICP-OES provides similar informing power as LA-ICP-MS for the forensic analysis of glass.
- LA-ICP-OES offers advantages over LA-ICP-MS including reduced cost and complexity.
- The report output of LA-ICP-OES is not straightforward due to the few applications of this coupled technique. However, once this is addressed this analytical approach will be more conducive to implementation in a forensic laboratory setting.

ACKNOWLEDGEMENTS

- Laser group: Sarah Jantzi, Erica Cahoon and Tatiana Trejos
- Almirall research lab at FIU
- Funding provided by the National Institute of Justice, grant 2009-DN-BX-K252

