Surface Enhanced Raman Spectroscopy (SERS) and Databases for the Characterization of Dyes

Deanna O'Donnell, Ph.D.

Trace Evidence Symposium Kansas City, Missouri

August 11th, 2011

The following research was conducted at City College of New York Metropolitan Museum of Art New York, NY

Research Objectives

- To validate SERS in a forensic context, and show the conditions under which Raman spectroscopy and especially SERS contribute to the value of forensic science.
- To compare both SERS and normal Raman spectra, and to explore the conditions in which each may be of value.
- To validate certain specialized SERS techniques
- To provide useful protocols for use of field workers
- To provide a searchable database for rapid and reliable field use.

Principle Investigators (*left to right*): Patrick Buzzini - Forensic & Investigative Science Program, West Virginia University
 Marco Leona - The Metropolitan Museum of Art, New York
 Philip Antoci - NYPD Crime Laboratory
 John Lombardi - Center for the Analysis of Structures and Interfaces, City College of New York

Why Raman Spectroscopy?

Raman is non-destructive and allows *in-situ* detection Raman spectra may readily be obtained in aqueous solution (not possible with IR)

Why Raman Spectroscopy?

Raman is non-destructive and allows in-situ detection

Raman spectra may readily be obtained in aqueous solution (not possible with IR)

Advantages:

- **Highly sensitive**: Very large enhancements of the Raman signal. This enables us to detect and identify extremely small quantities of trace chemicals.
- **Suppresses fluorescence**: Suppression of fluorescence interference, which normally makes such identification impossible.

Factors that alter SERS intensity:

- Type of metal nanoparticle; usually silver
- Size and shape of particle
- Excitation wavelength
- Presence of ions such as Cl⁻, SO₄²⁻, NO₃⁻

Surface Enhanced Raman Spectroscopy (SERS)

<u>0000000</u>

Molecules on silver surface

Advant

Highly

enable

chemic

Suppre

which I

Factors that

Silver Particle

SERS has its own set of challenges...

- small number of compounds studied so far
- large difference in SERS efficiency even for closely related compounds
- lack of searchable databases
- interferences due to impurities or matrix components (not a separation technique)
- SERS still requires removing a sample however microscopic - from the object under analysis
- Size and snape of particle
- Excitation wavelength
- Presence of ions such as Cl⁻, SO₄²⁻, NO₃⁻

Surface Plasmon Resonance

nal. This of trace

rference,

enhanced electric field

Instrumentation

Current Research Projects

Developing Methods

Applications

 Need ways to acquire trace amounts of analyte in a "non-destructive manner"

Gel Extraction

- Need a reliable substrate to yield reproducible spectra SERS substrate
- Art History/Conservation
 Xanthene Dyes
- Forensic Science: Controlled Substances
 SERS + Amphetamine
- Forensic
 Science/Anthropology
 SERS of Tattoo Inks

Gel Extraction Method

GOAL: Develop Non-Destructive Gel Extraction Method

Idea

- Ink or dye can be extracted from a medium using a hydroxy gel
- The gel extracts such a small amount of dye that it leaves the test subject virtually unchanged
 - o Important in trace analysis
- The extracted dye can then be analyzed and identified using normal Raman spectroscopy or SERS

Model System

 Ball Point Pen Ink on Whatman Filter Paper

Gel Extraction Method

Gel Extraction Method

	spectrum of Extracted
	Ident
Raman Intensit	 The gel extraction method is a fast, simple, versatile, and non destructive method for extracting inks and dyes Coupled with SERS, it becomes a powerful tool for chemical analysis
	Nondestructive Identification of Natural and Synthetic Organic Colorants in Works of Art by Surface Enhanced Raman Scattering, Leona, M.:

Refining SERS Technique Microwave Silver NPs

GOAL: Produce and Characterize Reproducible/Stable Ag surface for SERS

Historic Method:

Lee-Miesel Silver NPs (AgNO₃ + citrate) broad absorption (FWHM > 120nm) broad size distribution (3 - 50 nm) not stable over time

Lee, P.C.; Meisel, D., J. Phys. Chem., **1982**, 86, 3391-3395.

Our Method:

Microwave Reduction (Ag₂SO₄ + glucose + citrate)

narrow absorption (FWHM ~ 50 nm) narrow size distribution (3 - 10 nm) stable over 5 - 12 months reproducible SERS spectra over time

Leona, M., PNAS, **2009**, 106 (35), 14757-14762

Microwave Silver NPs

Historic Method:

Lee-Miesel Silver NPs (AgNO₃ + citrate) broad absorption (FWHM > 120nm) broad size distribution (3 - 50 nm) not stable over time

Our Method:

Lee-Miesel

AgNO₃

Microwave Reduction (Ag₂SO₄ + glucose) narrow absorption (FWHM ~ 50 nm) narrow size distribution (3 - 10 nm) stable over 5 - 12 months reproducible SERS spectra over time

Microwave Silver

SERS Model System: 4-mercaptopyridine

SERS of Various Dyes Classes

Dye Class

Publication

 Surface-enhanced Raman Spectroscopy study of the red dye laccaic acid Cañamares, M.V., et al., J. Raman Spectrosc., 2007, 38, 1259-1266.
 Surface Enhanced Raman Spectroscopy of Indanthrone and Flavanthrone Chang, J.; et al., J. Raman Spectrosc., 2009, 40, 1557-1563.

Raman and Surface Enhanced Raman Spectra of Flavone and Several Hydroxy-Derivatives

Teslova, T.; et al., J. Raman Spectroscopy, 2007, 38, 802-818.

Raman and Surface Enhanced Raman Spectra of Chrysin, Apigenin and Luteolin Corredor, C.; et al., Vibrational Spectroscopy, **2009**, *49*, 190-195.

Raman and Surface Enhanced Raman Spectra of 7 and 3',4' Hydroxyflavone Cañamares, M.V.; et al., Journal of ePreservationScience (Proceedings of the IRUG-8, Vienna Austria, Conference), 2009, 6, 81-88.

DFT, SERS, and Single Molecule-SERS of Crystal Violet

Cañamares, M.V.; et al., J. Phys. Chem. C, **2008**, 112, 20295-20300. Application of Raman spectroscopy and surface-enhanced Raman scattering to the analysis of synthetic dyes found in ballpoint pen ink

Geiman, I.; et al., J. Forensic Sci., 2009, 54, 947-952.

Surface-enhanced Raman scattering of protoberberine alkaloids

Cañamares, M.V.; et al., J. Raman Spectrosc., 2008, 39, 1907-1914.

Art History Application

GOAL: Characterize SERS spectrum of Halogenated Xanthene Dyes

- Want to Identify Dyes in Art
 - Art Conservation
 - Art History
 - Archeology
- large number of dye classes
 - we have investigated 10 dyes classes (75 dyes total)
- Van Gogh was known to use Xanthene Dyes

Xanthene Dyes: A Spectroscopic Study

Research Strategy:

Acquire normal Raman spectrum of each dye

Acquire SERS spectrum of each dye

Xanthene Dyes: A Spectroscopic Study

Extraction Method

Refine Technique

Surface-Enhanced Raman Scattering of Phenethylamines

Previous SERS work on Controlled Substances:

"Surface-Enhanced Raman Spectroscopy for Trace Identification of Controlled Substances: Morphine, Codeine, and Hydrocodone"

Rana, V.; Cañamares, M.V.; Kubic, T.; Leona, M.; Lombardi, J.R.; *Journal of Forensic Sciences*, **2010**, *55*(1), 200-207.

Over 175 different Phenethylamines

wide variety of therapeutic classes, including but not limited to..

- appetite depressants
- vascoconstrictors
- psychotropic drugs
- bronchodilators

- antidepressants
- Antiparkinson agents
- neurotransmitters

The METH makeover

SERS of Phenethylamines

GOAL: Acquire SERS of Amphetamines for trace analysis

MDMA (Ecstasy)

Normal Raman and SERS of Phenethylamine

SERS of Phenethylamine

Surface-Enhanced Raman Scattering of MDMA (Ecstasy) and Analogs

Taplin, F.; O'Donnell, D.; Kubic, T.; Leona, M.; Lombardi, J.R., *Forensic Science International* - submitted

Raman Scattering of Tattoo Inks

Anthropological Implications

Pulled from the Headlines....

Man Arrested for Tattooing Toddler

Parents Arrested for Home-Tattooing 6 Children

KTLA News 11:24 AM PST, January 4, 2010

Dad Charged With Tattooing 3-Year-Old Son

Man tattoos gang symbol on 7 y.o. son

Police Dept. will pay to have tattoo removed

Worst tattoo ever? Amateur pranks friend by giving him obscene ink instead of yin-yang he asked for NY DAILY NEWS Tuesday, October 26th 2010, 4:28 PM

Raman Scattering of Tattoo Inks

GOAL: Acquire SERS of Tattoo Inks

- Most work on Tattoo inks in the past have used Absorption Spectroscopy, IR, XRD and SEM.
- Some work has been done using Dispersive Raman looking at carbonous materials in tattoos*

* Poon, K.; I. Dadour, I.; McKinley, A., J. of Raman Spectroscopy, 2008, 39, 1227-1237.
 Poon, K.W.C., M.S./Ph.D. Thesis, The University of Western Australia, 2008.

Tattoo Inks - Normal Raman Spectra

Vermelho-Iron Works Brasil Ingredients (according to packaging; translated): toxic pigment (mineral/organic) deionized water, surfactant, humectant, preservative

NOTE: No color information provided

SERS of Tattoo Inks

Razberry Creem

Skin Candy Pigment Red 122

Note: Enhancement of three weak bands (1568, 1316 and 1238 cm⁻¹) and additional peaks resolved

Research Summary

Developing Methods

Gel Extraction

- Successfully extract and identify trace amounts
- Methodology is system specific

SERS substrate

- Ag NP synthesis by microwave reduction yields reliable, reproducible surface
- Stable for at least 5 months

Applications

Xanthene Dyes

- Developing SERS Library
- Future Work: Mixtures SERS + Phenethylamine
- 5 Phenethylamines characterized SERS of Tattoo Inks
- Tattoo Inks are heterogeneous, present challenge
- Work is ongoing

Other Areas of Research

TLC + SERS

- SERS can improve detection limit beyond visible detection
- Separation and Identification of complex mixtures

SERS of Dye/Drug mixtures

Engineered Mixtures and Real Samples

Acknowledgments

Prof. John Lombardi – research advisor (CCNY) Dr. Marco Leona – research advisor (Metropolitan Museum of Art) Patrick Buzzini - collaborator (West Virginia University) Phillip Antoci - collaborator (NYPD Crime Labs)

Current Students

Dane Christie – Undergraduate student (CCNY) Federica Pozzi - Graduate Student (Metropolitan Museum of Art) Francis Taplin – Graduate student (John Jay) Peter Decuzzi – Graduate student (John Jay) Michelle Miranda – Graduate student (John Jay) Kathryn Luppino - Undergraduate student (CCNY) Yi Pan – Graduate student (CCNY)

<u>Former Students</u> Dr. Richard Livingstone – *Graduate student* Loes Vermeij – *Undergraduate student* Elizabeth Sefton – *Undergraduate student, WVU* Chara Themistokleous – *Undergraduate student* Faiza Anwar – *Graduate student*

Funding

Department of Justice (Award Number: 2009-DN-BX-K185) Center for Exploration of Nanostructures in Sensors and Energy Systems (CENSES)

Phenethylamines

TLC + SERS

and Ag NP

