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PDQ Database

• Automotive paint systems consist of multiple layers of paint: a 
clear coat over a color coat which in turn is over one or more 
undercoats. With the exception of the clear coat, each layer 
contains pigments and fillers and all layers contain binders.  

• Automotive manufacturers tend to use unique combinations of 
pigments and binders in each paint layer.  It is this unique 
combination that allows forensic scientists to determine the 
manufacturer, model, and year of a vehicle from a paint chip left 
at a crime scene.

• PDQ is a database of the physical attributes, the chemical 
composition and the infrared spectrum of each layer of the 
original manufacturer’s paint system.  



Current Status of PDQ Searches

• PDQ was designed as a general text-based search and 
retrieval system.

• This text-based search of both physical and chemical 
characteristics serves as a potent pre-screen to a 
general infrared spectral search of materials that tend 
to be chemically very similar to one another. 

• The concept is to narrow the list of possible vehicles 
to a reasonable number of suspects, not to identify an 
individual vehicle. 



Clear Coats

• All too often, only a clear coat paint smear is left at the crime 

scene of a hit and run collision where damage to vehicles and 

injury or death has occurred. 

• In these cases, the text based portion of the PDQ database will 

not be able to identify the make and model of the motor 

vehicle because all modern clear coats applied to any painted 

metal parts have only one of two possible formulations: acrylic 

melamine styrene or acrylic melamine styrene polyurethane. 

• Search prefilters utilizing pattern recognition methods hold the 

potential for more specific searches relying less on somewhat 

subjective text-based characteristics. 



Dark Secrets of IR Library Searching 

Algorithms for PDQ

• Most infrared search algorithms involve some type of 
point by point numerical comparison between the full 
spectrum of an unknown and each member of the 
library.

• These algorithms lack interpretive ability because 
they treat the spectrum as a set of points rather than as 
a collection of specific bands.

• Band shifting is not handled well and bands of low 
intensity, which may be highly informative, are often 
ignored.

• As the size of the IR library increases, the likelihood 
of a match will increase even though the spectrum of 
the unknown may not be present in the library



Search Prefilters

• A search prefilter is a quick test to spot dissimilar 

spectra, thereby avoiding a complete spectral 

comparison.

• Utilizing search prefilters, many of aforementioned 

problems encountered in library searching can be 

successfully addressed.

• From an interpretive standpoint, the information 

contained in the prefilter should be based on 

identifying the factory that has produced the paint.



Development of Search Prefilters for 

the PDQ Database

• Using the wavelet packet transform, PDQ library 
spectra will be passed through two scaling filters: a 
high pass filter and a low pass filter

• The decomposition process which utilizes wavelet 
coefficients that represent the high and low frequency 
components of the signal will then be iterated using 
successive wavelet packets until the required level of 
signal decomposition is achieved.

• Wavelet coefficients characteristic of plant are 
identified by a genetic algorithm for pattern 
recognition analysis.



PDQ Data Set

• IR spectra from six Chrysler plants (1999) obtained 
from the PDQ database were selected for analysis.  

• Each of the six plants (BRA, STL, JFN, STH, SAL, and 
NEW) was represented by at least 10 paint samples.

• For this study, only IR spectra of clear coats from metal 
substrates obtained using BioRad 40A or BioRad 60 
spectrometer were used. 

• The data set was divided into a training set of 88 paint 
samples and a validation set of 3 paint samples. 

• The initial focus of the study was the training set 
samples. 



Paint Dataset (91 samples)

Plant Number of 

samples

BRA (1) 25

STL (2) 21

JFN (3) 13

STH (4) 9

SAL (5) 12

NEW (6) 11

• All samples are clear coats

• All samples are from metal parts

Part Number of 

samples

Roof 68

Hood 9

Fender 10

Door 2

Hatchback 1

Trunk 1



Pattern Recognition Analysis

Using the Original Spectral Data

• Each IR spectrum (data vector) was normalized to 

unit length.

• All spectral features were autoscaled such that each 

measurement has a mean of zero and a standard 

deviation of one.

• Autoscaling removed any inadvertent weighing of 

the data that otherwise would occur  due to 

differences in the magnitude among the measurement 

variables comprising the data set. 



Feature Selection Using the Pattern 

Recognition GA

• A set of features that optimize the separation of the 

classes in a plot of the two or three largest principal 

component of the training set data is identified using 

a genetic algorithm.

• Because principal components maximize variance, 

the bulk of the information encoded by these feature 

sets will be about differences between classes in the 

data set.
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Advantages

• Chance classification will not be a serious problem 

since the bulk of the variance or information content 

of the feature subset selected is about the pattern 

recognition problem of interest.

• Features that contain discriminatory information 

about a particular class membership problem are 

usually correlated, which is why feature selection 

methods based on PCA are preferred.



Information Filter

• The principal component plot functions as an 

embedded information filter.

• Feature sets are selected based on their PC plots.

• A good PC plot can only be generated using features 

whose variance or information is primarily about 

class differences.

• Hence, PCA limits our search to these types of 

feature sets, thereby significantly reducing the size of 

the search space.



Genetic Algorithm
for Pattern Recognition

Population Reproduction

Boosting

Evaluation
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Principal Component Analysis

• The first step in this study was to apply principal 

component analysis (PCA) to the data.

• Using this procedure is analogous to finding a new 

coordinate system that is better at displaying the 

information content of the data than axes defined by 

the original measurement variables.

• This new coordinate system is linked to variation in 

the data.

• Often, only two or three principal components are 

necessary to explain most of the information present 

in spectral data due to the large number of interrelated 

measurements



Plot of two largest Principal Components developed 

from all 1944 wavelengths for the training set



Searching the Solution Space

• The GA identified features by sampling key feature 
subsets, scoring their PC plots, and tracking those 
classes and samples that were difficult to classify.

• The boosting routine used this information to steer 
the population to an optimal solution.

• After 300 generations, the GA identified 8 
wavelengths which contain discriminatory 
information about the manufacturing plant.

Group A



Score Plot developed from 8 wavelengths selected by 

Pattern Recognition GA for the training set



Observations

• Class 2 (STL) appears to be composed of 3 different 

types of samples.

• Class 5 (SAL), which forms a well defined cluster of 

points, is well separated from the other manufacturing 

plants.

• Classes 1 (BRA) and 4 (STH) are adjacent and 

separated from each other in the PC space.

• Classes 3 (JFN) and 6 (NEW) are adjacent but not 

fully separated from each other in the PC space.



Removal of STL Samples

• STL (Class 2) samples were removed from the data 
set and the pattern recognition analysis was repeated 
again using our genetic algorithm for feature 
selection.

• 10 wavelengths were identified using the pattern 
recognition GA.

• The score plot developed from these 10 wavelengths 
is shown in the following slide.

• Again, the trends that were reported in the previous 
study are again observed. 



Score Plot developed from 10 Wavelengths Selected by 

Pattern Recognition GA for the training set



Analysis of IR Spectra

• To better understand the situation involving the STL 

samples, a PC plot of all 1944 features was generated 

for the STL samples.

• Clustering in 3 distinct groups is evident, which 

corresponds to the clustering shown by STL samples 

in the original 6-class study.

• Each group has a distinctive IR spectrum as shown in 

the accompanying slides. 



Group A

Group B

Group C



Analysis of IR Spectra

• IR spectra from Groups A, B, and C are compared.

• Within each group, the spectra are similar.

• However, spectral differences between groups are 

evident.
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Mystery in St. Louis

• Group A corresponds to SUV’s (Plymouth Voyager, Dodge 

Grand Caravan, and Chrysler Town and Country).

• Groups B and C correspond to Dodge RAM trucks

• During the production year Chrysler made a change in the 

clear coat formulation used at the St. Louis North Plant 

– Group B samples fall under the BASF supplied Duraclear 

II clear coat and has a chemistry of acrylic, melamine, 

styrene, and polyurethane

– Group C falls under the DuPont supplied Gen IV AW clear 

coat and has the chemistry acyclic, melamine, and styrene



Take Home Points

• More powerful spectral preprocessing methods are 
needed to discriminate BRA, JFN, STH, SAL, and 
NEW paint spectra.

• For this reason, the wavelet packet transform will be 
applied to the IR data.

• Our goal is deconvolution, not data compression. 
Hence, the number of wavelet coefficients generated 
will be greater than the number of data points 
comprising the spectra in the wavelength domain.

• We will use the pattern recognition GA to identify 
informative wavelets.



Wavelets

• The Daubachies 12 mother wavelet was used to 

decompose each IR spectrum by the wavelet packet 

transform into 16362 wavelet coefficients. 

• A plot of the two largest principal components of the 

16362 wavelet coefficients proved uninformative.



Score Plot developed from16362 wavelet coefficients 

used to represent the IR spectra in training set



Searching the Coefficient Space

• The pattern recognition GA was then used to identify so-called 
informative coefficients. 

• The GA identified these coefficients by sampling key 
coefficient subsets of the data, scoring their PC plots, and 
tracking those classes and samples that were difficult to 
classify.  

• The boosting routine used this information to steer the 
population to an optimal solution.

• After 100 generations, the GA identified 36 wavelet 
coefficients which contained information characteristic of the 
manufacturing plant.

• Using transverse learning, 3 prediction set samples were 
correctly classified in the principal component plot developed 
from the 70 training set samples and 36 wavelet coefficients 
identified by the pattern recognition GA. 



Score Plot developed from 36 wavelet coefficients identified by 

the Pattern Recognition GA for the training set



Prediction set samples (in red) projected onto the score plot 

developed from the 36 wavelet coefficients for the training set



Conclusion

• Pattern recognition methods can provide additional 
information about the class labels used to characterize 
IR spectra in the PDQ database.

• The wavelet packet transform when combined with 
the pattern recognition GA is able to identify 
fingerprint patterns in the IR spectra of paints 
characteristic of the manufacturing plant.

• Search prefilters developed from wavelet coefficients 
will simplify library searching.

• When combined with search algorithms that are more 
powerful but also more computationally intensive 
than the Euclidean distance, similarity searching will 
become feasible.



Acknowledgements

• Mark Sandercock and Tamara Hodgins, National Centre for 

Forensic Services – Alberta, Royal Canadian Mounted Police, 

Edmonton, Alberta, Canada

• Scott Ryland, Florida Department of Law Enforcement Regional 

Crime Laboratory, Orlando, FL

• Ayuba Fasasi, Jay Mehta, Collin White, Nuwan Perera, and 

Nikhil Mirjankar, Department of Chemistry, Oklahoma State 

University, Stillwater, OK. 

• Financial support from the National Institute of Justice (2010-

DN-BX-K217) is appreciated.


