

Discrimination of Human Hairs Using Color Measurements and Digital Microscopy

Claude Roux¹, Liz Brooks^{2,3}, Lisa Masaki¹, Chris Lennard³ and James Robertson²

- 1. Centre for Forensic Science, University of Technology, Sydney, Australia
- 2. Forensic & Data Centres, Australian Federal Police, Canberra, Australia
 - 3. National Centre for Forensic Studies, University of Canberra

Strengthening Forensic Science in the United States: A Path Forward

Committee on Identifying the Needs of the Forensic Sciences Community; Committee on Applied and Theoretical Statistics, National Research Council ISBN: 0-309-13131-6, 254 pages, 6 x 9, (2009)

This PDF is available from the National Academies Press at: http://www.nap.edu/catalog/12589.html

- No scientifically accepted statistics exist about the frequency with which particular characteristics of hair are distributed in the population.
- There appear to be no uniform standards on the number of features on which hairs must agree before an examiner may declare a "match."

REPORT OF THE COMMISSION OF INQUIRY INTO CERTAIN ASPECTS OF THE TRIAL AND CONVICTION OF JAMES DRISKELL

Hair as Evidence

Testimony of Mr Peter Neufeld (Driskell Inquiry, 2006, page 5585)

"There is no question, and I think everyone in the room would agree, that DNA [nuclear DNA] is a far more robust forensic science that [than] is hair microscopy. It is speculative, actually, to suggest that hair microscopy still can play a useful role in the forensic science or criminal justice adjudicatory process..."

Hair Evidence 'on Trial'

- Criticisms of hair evidence are such that it is reasonable to ask -
- What is the future of forensic hair examination?
- 1. Do we just ignore hair evidence (too hard!), maybe occasionally undertaking mtDNA analysis? [ad-hoc approach]

OR

2. Do we consider hair as a given type of trace that combines both morphological and biological information whose value and limitations are well understood and that must be examined in a holistic manner?

Microscopic Examination

- Integral part of the holistic approach to trace evidence (hence to hair too).
- However, since the advent of DNA, it has become the 'weakest link'.
- We must actively investigate further the means of objectively examining hair under the microscope.
- Significant work in this area at the AFP in collaboration with UC over the last 5 years (Brooks, Robertson et al.), more recently with UTS and University of Adelaide.

Numerical Analysis of Hair

- Three elements:
 - Element 1: digital imaging and image montaging
 - Element 2: image analysis and production of numerical data
 - Element 3: analyses of objective measures of the human hair features of color and pigmentation

Equipment

- Olympus DP70 digital camera attached to a Leica Diaplan compound microscope, 400× magnification
- Syncroscopy Automontage
 Software vertically stacks
 images to produce a single 'in
 focus' image.
- Image analysis V ++ for Windows (Digital Optics Ltd)

Digital Imaging and Image Montaging

Example of Montage

Image Analysis

- Digital image is composed of a pixel array representing a series of intensity values
- Organised (x,y) Cartesian coordinate system which means each pixel has a computer 'address'
- coordinate system enables numerical values to be assigned to the features observed within the image

Image Analysis of color

Amounts of red, green & blue

3 wavelengths X, Y and Z – direct measurement of human eye

L: luminance a: green to red b: blue to yellow

Experiment Using Brown Caucasian Hair color

Associate the 10 image sets
(25 montaged images)
with the donor of the hair
Discriminate between 10
image sets of brown haired
individuals

Experiment on Wider Variations of Hair color

			Hair color group			
		olor mode	Blond	Black	Brown	Red
% in	Casewise analysis dividual hairs correctly alloc	RGB	27.3	54.3	60	51.4
		XYZ ated	30.3	51.4	51.4	50
		LAB	33.3	57.1	60	54.3
% paired	Pairwise Analysis cases where centroids were	RGB	38.1	42.8	71.4	52.4
		XYZ different	38.1	42.8	71.4	52.4
		LAB	38.1	57.1	76.2	52.4

"Pattern Extraction from image "Template"

color image from Person 10, Hair Sample B-3, optical section

Sample 10B-3-45

Pigment Pattern Identification

Pattern Repeat

Generation of Pattern Matching Values

Pigment Pattern Analysis - Experiment on Blond Hairs

	Probabilities of log(mean+1)								
Hair	BD1	BD2	BD3	BD4	BD5	BD6	BD7		
1	0.8770	0.2514	0.7764	0.5517	0.6064	0.0516	0.1423		
2	0.5832	0.4364	0.5438	0.0526	0.0838	0.1075	0.0548		
3	0.8810	0.7704	0.6217	0.7764	0.3632	0.4207	0.0427		
4	0.4840	0.4207	0.1711		0.0655	0.4801	0.1562		
5	0.6628	0.1922	0.7357		0.1210	0.6480	0.2946		

The probabilities that the log mean values obtained exceeded the mean value obtained from persons matched with themselves.

Telogen Hairs

- Where is nDNA and how much?
- Examples of Telogen Hair Roots with >30 Nuclei DAPI Staining

Telogen Hairs

- Where is nDNA and how much?
- Examples of Telogen Hair
 Roots with >30
 Nuclei Harris's
 Haematoxylin
 Staining

Success of nDNA Analyses of Hairbrush Samples in Each Nuclear Count Group

Percentage of hairs that produced full, partial or non-reportable DNA profiles separated according to nuclear count. Successful DNA typing was predominantly observed in telogen roots with greater than 30 nuclei.

MEDIA RELEASE SENATOR KIM CARR

Minister for Innovation, Industry, Science and Research

Wednesday, 28 May 2008

'Silent witness' research to revolutionise forensics

\$63 million in new ARC grants announced

A radical new hair examination technique that is set to revolutionise forensic science is one of 208 new research projects sharing in \$63,717,139 over five years, the Minister for Innovation, Industry, Science and Research, Senator Kim Carr, announced today.

The University of Canberra "Silent Witness" project is a collaboration with the Australian Federal Police and Leica Microsystems Pty Ltd, and aims to improve the quality of evidence drawn from human hair.

Aims of the ARC Project

- To produce an objective, numerical-based system for identifying "matches" among hair samples
 - color models: RGB, CIE L*a*b*, CIE XYZ
 - Pigment pattern recognition
 - Chemical imaging
 - X-ray diffraction
- To investigate the actual location of DNA (telogen hairs) and develop new methods, drawing on ancient DNA research which focuses on use of degraded and low copy specimens
- Compare the discriminating powers of these approaches
- New screening sequence and protocol for hair examination

Conclusions

- Resurgence of research into forensic hair examination
- Crucial to adopt a holistic approach to hair examination; as opposed to a competing view 'microscopy vs. DNA
- Color analysis and pigment pattern recognition are promising as processes to generate objective numerical values
- These techniques may assist to develop large scale surveys never undertaken with hairs so far
- DNA staining methods are promising as part of a novel screening sequence – focus back on microscopy!

Acknowledgments

- Leica Microsystems
- CSIRO
- Bruce Comber, AFP
- Carolyn McLaren, Univ. Canberra
- Janette Edson, Univ. Adelaide
- Volunteers

