Analysis of Trace Evidence Using Microspectrophotometry and Multi-Variate Statistics

John V. Goodpaster, Ph.D.

Department of Chemistry and Chemical Biology Forensic and Investigative Sciences Program Indiana University Purdue University Indianapolis

Outline

- The Nature of Class Evidence
- The Role of Chemometrics
- Research at IUPUI
 - Dyed Hair (Julie Barrett and Jay Siegel)
 - Clearcoats (Elisa Liszewski, Simon Lewis and Jay Siegel)
 - Dyed Cotton Fibers (Elisa Liszewski)

The Realities of Trace Evidence Comparisons

- You are ask to compare two items:
 - A sample, collected by someone else, from a questioned source that consists of a small amount of poor quality material deposited under unknown conditions
 - A exemplar from a known source that consists of a larger amount of good quality material which can be sampled by you under known conditions
- How can we reliably approach this analytical problem?

Some "Q"s

Some "K"s

Step 1: Understand the Nature of Class Evidence

- In order for class evidence to be useful, it must be:
 - Widespread
 - Diverse
 - Reliably differentiable
- We ACCEPT and EXPECT
 that some items will be in
 the same class and will have
 indistinguishable physical
 and/or chemical
 characteristics.

Step 2: Apply "Forensic Logic"

- Given:
 - An exemplar (K) from a known source
 - A questioned sample (Q) from an unknown source
- We MUST Assume that the source is homogenous and/or K and Q are representative
- This leads us to two statements
 - Statement A: Q and K originated from the same source
 - Statement B: Q and K have indistinguishable class characteristics

Premise: If A then B

Consequence: If not B then not A (Exclusion)

HOWEVER – "If B Then A" does not automatically follow!!!

Step 3: "Don't oversell the evidence. . . but give it its due"

Exclusion

"Q is excluded as having the same source as K"

Association

- "Q is consistent with K"
- "Q could not be excluded as having the same source as K"
- "Q could have originated from K or another source with the same physical and chemical characteristics"
- How can we articulate the significance of an association?
- Ideally, we know something about the number of classes and/ or their relative size

Assessing Significance of Trace Evidence Comparisons

- Class Discrimination Studies
 - A collection of samples is analyzed using multiple techniques and the extent to which samples can be placed into multiple differentiable classes is assessed
- Pair-Wise Studies
 - A collection of samples is analyzed using multiple techniques and the extent to which pairs of samples remain indistinguishable is assessed
- Environmental Studies
 - A specific type of sample is selected and the frequency with which that sample is found by chance is assessed

A Comprehensive Approach

- 1. Understand the sample population
- 2. Acquire a large and representative collection
- 3. Use multiple, orthogonal analytical methods that are not subject to microheterogeneity
- 4. Acquire replicate data and quantitatively assess reproducibility and the extent of differentiation (Chemometrics)
- 5. Monitor changes in the sample population over time

The Role of Chemometrics

Unsupervised

- "Here's my data, how is it organized?"
- No prior knowledge of groupings is input into the analysis
- Examples
 - Clustering Analysis
 - PCA

Supervised

- "Here's my data, how does this new data fit in?"
- Data is grouped by the user prior to analysis
- Examples
 - Discriminant Analysis

Typical Chemometric Procedure

- 1. Pre-treatment
 - 1. Baseline correction
 - 2. Normalization (sum of squares)
 - 3. Mean centering
- 2. Agglomerative Hierarchical Clustering (AHC)
- Principal Components Analysis (PCA)
- 4. Discriminant Analysis (DA)

Agglomerative Hierarchical Clustering (AHC)

- Makes up homogeneous groups of objects (classes) on the basis of their description by a set of variables
- Produces a dendrogram, whose root is the class that contains all the observations.
- One can choose to truncate the tree at a given level, depending upon either user-defined constraints or more objective criteria.

Principal Components Analysis (PCA)

- Visualizes correlations between variables
- Obtains non-correlated factors which are linear combinations of the initial variables
- Visualizes observations in a 2- or 3-dimensional space

Discriminant Analysis (DA)

- Given observations with known groups (a "learning sample"), DA optimizes these groups using canonical variates (CVs)
- New observations are then assigned to one of the existing groups

"So, what's in it for us?"

Chemometrics CAN:

- Help determine how many reliably differentiable groups are present in a sample population
- Find characteristics that best discriminate different samples
- Indicate classes that are easily confused
- Assess the extent to which a known and unknown belong to the same class

Chemometrics CANNOT:

- Determine an "error rate" for a forensic comparison that incorporates multiple microscopic and instrumental steps
- Decide for you whether or not a Q and K came from the same source

The Problem with Chemometrics

- It consists of advanced mathematical and statistical methods that can be difficult to understand
- How can we be comfortable with chemometric studies if we do not understand them?
- Are statisticians trying to usurp the role of our training and experience in interpreting data?

MSP and Chemometrics

- Chemometrics on MSP data can:
 - Extract information from a large data set
 - Reduce complexity
 - Discern subtle differences in spectra
 - Provide quantitative predictions of the classification of unknown samples

UV-visible Microspectrophotometry

- Combines microscopy and spectrophotometry
- Small sample sizes (fibers, ink, paint)
- Non-destructive
- Minimal sample preparation
- Provides quantitative color determination

UV/visible/NIR MSP (transmission/reflectance/fluorescence)

Part I: Analysis of Dyed Hair

- Can spectroscopic analysis yield forensically useful information about hair dyes?
- Can you identify the manufacturer of a hair dye based on its absorbance characteristics?

UV-visible Spectrum of Dyed Hair

PCA Observations Plot

- Positive loadings indicate a positive correlation between the variable and the factor
- Negative loadings indicate a negative correlation between the variable and the factor
- Loadings around zero indicate no correlation

Discriminant Analysis

Part I Conclusions

- Red hair dyes were successfully classified into three primary groups
- Important spectral regions include 230 330
 nm, 350 410 nm, and 440 540 nm
- Classifying by dye brand or manufacturer was not successful (Accuracy = 56%)
- There was no change in results upon longterm storage, but there is significant fading of dyed hair samples with successive washing

Part II: Automotive Clear Coats

- Top coat of paint that contains no pigmentation or color
- Sprayed over top of certain color coats to serve as a protective film
- Contains 1-2% UV
 absorbers (absorb light between 290-350 nm)

AHC Results

Central Objects of Three Classes

PCA Observations (axes F1 & F2: 76.91%)

Factor Loadings Plot

Central Objects of Three Classes

Confusion Matrix for the Cross-Validation Results:

From/ To	1	2	<i>3</i>	Total	% Correct
1	434	21	0	455	95.38
2	22	230	8	260	88.46
3	0	2	23	25	92.00
Total	456	253	31	740	92.84

Part II Conclusions

- Automotive clearcoats are reliably organized into three groups
- Important spectral regions include 240 280
 nm, 300 310 nm and 320 360 nm
- Clear trends in the organization of the data by make, model and year were <u>not</u> observed

Part III: Analysis of Dyed Cotton Fibers

- The color of cotton fibers is considered to be the source of greatest variation.
- Association can be problematic due to sample heterogeneity and a lack of quantitative criteria for comparing spectra

Part III Conclusions

- MSP can reliably distinguish cotton fibers dyed with Direct Red, Reactive Red 120 and Reactive Red 123
- But is this a representative sample of red cotton fibers?

Acknowledgements

- IUPUI University Fellowship (Elisa Liszewski)
- Indiana State Police Microanalysis Unit
- Aveda Fredric's Institute and Honors Beauty College
- Forensic Sciences
 Foundation Jan S. Bashinski
 Criminalistics Graduate
 Thesis Grant (Julie Barrett)

