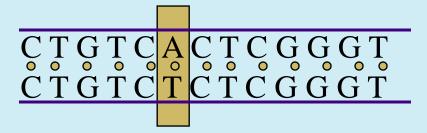


Technology Transition Workshop | Ranajit Chakraborty, Ph.D.

Evaluation of Genome-wide SNP Haplotype Blocks for Human Identification Applications

Overview


- Some brief remarks about SNPs
- Haploblock structure of SNPs in the human genome
- Criteria for selection of optimal SNP haploblocks for forensic applications
- Preliminary results of optimal parameter combinations from HapMap Data (Phase I and Phase II)
- Feasibility of SNP haploblock selection from human genome
- Strategies of interpretation of SNP haploblock-based forensic evidence
- Preliminary conclusions and future directions

Forensic SNP Analysis

Single Nucleotide Polymorphism (SNP)

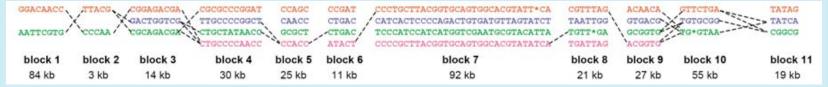
- Most SNPs are biallelic
- About three million SNPs in human genome (characterized)
- Provide more results from low quantity template DNA or degraded samples than STR typing
- Complete automation feasible
- Low mutation rates (10⁻⁸/site/generation)
- Use of SNPs in forensics is not new (e.g., HLA-DQα)

Technology Transition Workshop

How Many SNPs Would be Needed for Forensic Applications?

- Answer depends upon allele frequencies at SNP sites, efficiency in different types of applications
 - For example, power of discrimination in identity testing; PE
 or PI in parentage analyses; LR in kinship assessment, etc.
- Chakraborty, et al. (1999, Electrophoresis 20: 1682-96)
 showed nomograms suggesting that the number of SNPs needed to equal the power of the current battery of STR loci would necessitate the use of several sets of syntenic SNPs
 - For example, SNPs residing on the same arm of several chromosomes

Forensic SNP Analysis


Strategies for Improving Power of SNPs for Forensic Applications

- Translate sets of SNPs into multiallelic markers
- Select a panel of SNP sets that satisfy conditions of the product rule
 - For example, statistically independent sets of SNPs
- Search for genome-wide availability of desired SNPs for feasibility of detection of such panels of SNPs
- Test the robustness of typing selected SNPs in forensic samples of compromised DNA quality

Transition Workshop

Haplotype Block (Haploblock)

Haplotype structure across 500 kb on 5q31 (Daly, M.J., et al. 2001, Nat. Genet. 29: 229-232)

- Linkage disequilibrium (LD): allelic association between two loci (for example, SNP sites)
- Closely linked SNPs with high LD → haplotype blocks
- Human genome is composed of block-like structures of low haplotype diversity (strong LD within block) separated by recombination hot spots
- Complete LD among *n* linked SNPs \rightarrow (*n* + 1) haplotypes

Advantages of Haploblock as Forensic Marker

- Can be typed in highly degraded samples
 - Where no results from STR analysis may be obtained
 - Improves the limited discrimination power of individual SNPs
- Haploblock can be considered as "pseudo STRs"
 - One haploblock → one "STR" locus
 - Different haplotypes → different "alleles"
- Each haplotype treated as a lineage marker like
 Y-chromosome and mtDNA
 - Exception possible transmission from both parents following standard Mendelian principles

HapMap Project (www.hapmap.org)

- Three major populations (90 Caucasian, 90 African, 45 Chinese and 45 Japanese)
- Phase II data: > 3,000,000, SNPs
 - LD information: D', r2
 - Phase information
 - Genotype information

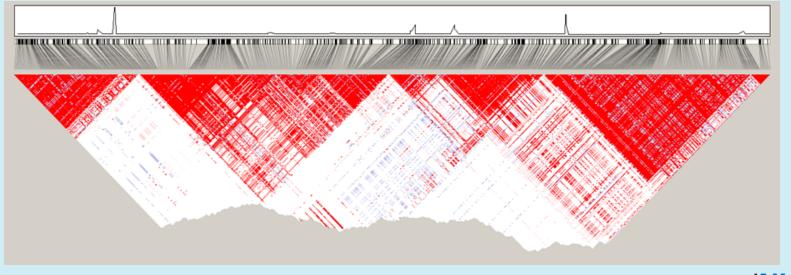


Image courtesy of http://hapmap.ncbi.nlm.nih.gov/

Technology Transition Workshop

Haploblock Selection Criteria

- Exist in all major populations (Caucasian, East Asian, African)
- Higher discrimination power (for example, lower match probability) than that of the individual SNPs within the block
- Hardy-Weinberg Equilibrium for each block
- No significant LD between blocks
- Sufficient number of candidate haploblocks in the whole genome

Forensic SNP Analysis

Parameters Used in Selection

- Maximum match probability reduction per haploblock (mmpr)
- Minimum LD between SNPs: r²
- Population substructure: maximum F_{st}
- Minimum heterozygosity (MinHet)
- Minimum number of haplotypes in each population (MinHap)
- Minimum number of SNPs per haploblock (MinSNP)

Best Parameter Set

- mmpr = 0.85
- $r^2 = 0.7$
 - No haploblock found with $r^2 \ge 0.8$
- $F_{st} = 0.06$
- MinHet = 0.2
- MinHap = 3
- MinSNP = 3

The best thresholds of parameters other than r² found on Chr1

Technology Transition Workshop

Haploblocks with Best Parameter Set

Chromo -some	Num. blocks with PS	Num. blocks with PS & HWE	Num. blocks with PS & HWE & LD filters (n)	Avg. Cum. MP of blocks (b)	Cum. Min. MP of SNPs (s)	MP reduction per block (mpr)	Num. Of SNPs
1	9	9	0				
2	23	14	1	0.3287	0.4050	0.8117	6
3	12	10	2	0.1144	0.1617	0.8412	9
4	21	15	1	0.2926	0.3765	0.7773	6
5	16	12	3	0.02633	0.05480	0.7833	25
6	15	10	0				
7	16	9	2	0.1035	0.1465	0.8403	30
8	18	12	2	0.1025	0.1518	0.8215	7
9	8	6	0				
10	15	8	1	0.3527	0.4169	0.8460	4
11	14	12	3	0.03872	0.06700	0.8209	13
12	12	5	1	0.3036	0.3890	0.7806	5
13	17	14	3	0.0344	0.06409	0.8123	14
14	10	6	3	0.02339	0.04789	0.7876	11
15	9	4	0				
16	7	4	1	0.3310	0.4053	0.8167	3
17	5	4	0				
18	8	7	1	0.3123	0.3689	0.8465	5
19	5	4	0				
20	6	1	0				
21	6	3	0				
22	1	1	0				
Total	253	170	24	1.059E-12	1.566E-10	0.8121	138

Technology
Transition Workshop

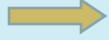
Haploblock Example – Chr2

Haplotype Frequencies

Haplotype	CEU	JPT+CHB	YRI
010011	0	0	0.0417
011000	0.0083	0	0.0417
001000	0.3417	0.5167	0.4833
000111	0	0.0056	0
110010	0	0.0056	0
111000	0	0	0.0167
110111	0.5833	0.4611	0.4167
101000	0.0083	0	0
110110	0.05	0.0056	0
110100	0.0083	0.0056	0

Num. SNPs = 6 Num. haplotypes = 10 Avg. Het. = 0.5499MP of block = 0.3287Min. MP of SNPs = 0.4050MP reduction = 0.8117 F_{st} = 0.024

Different Haploblock Structure Among Populations


- $r^2 = 0.7$ and MinSNP = 3
 - 11,741 haploblocks in Caucasian
 - 12,456 haploblocks in Chinese
 - 12,237 haploblocks in Japanese
 - 7,318 haploblocks in African
- Population-specific haploblock selection criteria may be necessary to obtain best performing systems

Evidence Interpretation Based on Haploblocks

- Transfer evidence
- Mixture interpretation
- Kinship analysis

One genotype

...(A/T)(A/T)...

Two possible haplotype combinations

TT+AA

TA+AT

Transfer Evidence

- Compared a single source profile from crime scene evidence with profile of the suspect
- Exclusion or inclusion → compare the genotypes
- If inclusion, random match probability is:

$$\Pr(G) = \sum_{\substack{\text{Haplotype combination} \\ (H_i, H_j) \text{ composes } G}} p_i p_j$$

Mixture versus single source sample

Transfer Evidence – Example

Haplotype	Frequency	Genotype	(A/T)(A/T)		
TT	0.4	Match Probability =			
TA	0.3		$\int TT/AA: 2 \times 0.4 \times 0.2 = 0.16$		
AA	0.2				
AT	0.1		(IA/AI. 2 × 0.3 × 0.1 = 0.00		
= 0.2			0.22		

Mixture Detection

- The probability of a genotype (G):

$$\Pr(G) = \sum_{\substack{\text{Haplotype combination} \\ (H_k, \dots, H_l) \text{ composes } G}} \prod_{i=k}^{l} p_i$$

 The probability of a genotype (G) given number of contributors (N)

$$\Pr(G \mid N = 1) = \sum_{\substack{\text{Haplotype combination} \\ (H_i, H_j) \text{ composes } G}} p_i p_j$$

$$\Pr(G \mid N = 2) = \sum_{\substack{\text{Haplotype combination} \\ (H_i, H_j, H_k, H_l) \text{ composes } G}} p_i p_j p_k p_l$$

$$Pr(G \mid N = 3) = \sum_{\text{Haplotype combination}}$$

 $p_i p_j p_k p_l p_m p_n$

Technology
Transition Workshop

 $(H_i, H_i, H_k, H_l, H_m, H_n)$ composes G

Exclusion Probability and Likelihood Ratio for Mixture Analysis

Probability of exclusion (PE)

$$PE = 1 - \left(\sum_{H_i} p_i\right)^2$$
, where Σ is over all H_i 's that are contributors to G

Likelihood ratio (LR): S is suspect; V is victim; UN is an unknown contributor

$$LR = \frac{\Pr(V+S)}{\Pr(V+UN)}$$

Pairwise Kinship Analysis

One genotype (G) has k haplotype combinations; $X_i = (H_{i1}, H_{i2})$ is i-th combination, with likelihood $P(X_i)$; w_i as the weight of X_i $w_i = P(X_i) / \sum_{i=1}^{K} P(X_i)$

person-1

person-2

$$X_{i1}$$
 X_{i2}
 $X_{(k1)1}$
 $X_{(k2)}$

Likelihood of these two persons given relationship (R):

relationship (R):

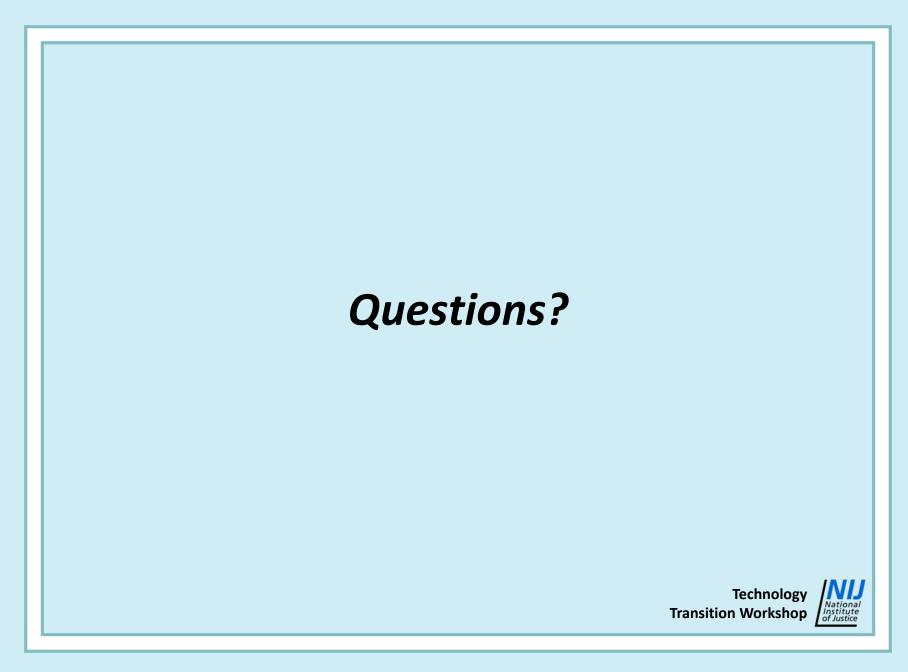
$$X_{i2}$$
...
 $X_{(k2)2}$
 $L_{Block} = \sum_{i=1}^{k_1} \sum_{j=1}^{k_2} w_{i1} w_{j2} L(X_{i1}, X_{j2} \mid R)$

Conclusions

- This is the first effort to assess the feasibility of genomewide SNP haploblock structures for human identity testing encompassing all major forensic applications
- SNP haploblocks provide an alternative approach for forensic investigations, especially for highly degraded samples
- Haploblock selection depends on multiple criteria
- Consideration is needed for evidence interpretation based on haploblock results, because of multiple haplotype combinations that are possible for observed genotypes

Future Directions

- Portability/universality of efficient haploblocks to be tested with wider sets of genome data
- Alternatively, population-group specific panels of haploblocks have to be determined with validation data from anthropologically defined populations
- Robustness of genotyping in samples with compromised DNA quality (mimicking forensic samples) has to be tested


Technology

Acknowledgements

- This work was jointly done with Dr. Jianye Ge, Dr. Huifeng Xi, Dr. Bruce Budowle, and Dr. John Plantz, who are co-authors of the manuscript to be submitted for publication
- Research for the work was partially funded by grants and contracts from the US National Institutes of Health and US National Institute of Justice

Forensic SNP Analysis

Contact Information

Ranajit Chakraborty, Ph.D.
Professor, Dept. Environmental Health
University of Cincinnati College of Medicine
3223 Eden Avenue, Room K-108
Cincinnati, OH 45267-0056
Tel. (513) 558-4925; Fax (513) 558-4397
E-mail: ranajit.chakraborty@uc.edu

