

Closing Discussion

Laser Microdissection – Summary

- LM instruments are well established and utilized throughout the medical research community
- FISH techniques are routinely utilized in clinical cytogenetic laboratories
- LM and FISH have only just recently (< 6 years) been utilized within the forensic community

Laser Microdissection – Summary Advantages

- LM techniques provide a method of component separation from mixed samples
- Clean, single donor male profiles have been consistently seen from:
 - Varying cellular ratio slides
 - Aged samples
 - Mock evidence items

Technology Transition Workshop

Laser Microdissection – Summary **Advantages**

- LM instruments are ideal for labs attempting to • process difficult evidence containing:
 - Low copy number (LCN) samples
 - Sexual assault items
 - Touch evidence cellular mixtures

 The PALM[®] MicroBeam and Arcturus[®] PixCell[®] II have proven to be effective tools for the separation of samples at Bode Technology

Laser Microdissection – Summary Limitations

- These are tools that should be considered a functional option when difficult and imperative evidence arrives in the laboratory
- LM should be employed when there is a known mixture sample located on items of evidence

Laser Microdissection – Summary Limitations

- Incorporation of procedures of this type would provide alternative methods of sample processing for those labs utilizing LM technologies
- LM processing is not intended to be a highthroughput technique

Laser Microdissection Evidence Types

- LM techniques can provide a method of component separation from the following samples:
 - Sexual assault evidence mixtures:
 - Separate sperm from epithelial cells
 - Identify and separate male from female epithelial cells based on fluorescent in situ hybridization (FISH) of X and Y chromosome sequences

Laser Microdissection Evidence Types (Continued)

- Touch evidence mixture types:
 - Male/female mixtures of blood/blood or blood/epithelial
- Other evidence types:
 - Bone extraction: collect nucleated cells from bone matrix
 - Hair: collection of nucleated cells from hair
 - Aged slides
 - Botany

Technology Transition Workshop

Tested LM Processing Techniques

- When utilized, the following processing techniques reliably produce full and/or high partial profiles when used with LM:
 - Extraction
 - QIAGEN[®] QIAamp[®] DNA Micro Kits
 - QIAGEN[®] EZ1[®] Kits
 - ZyGEM[™] forensicGEM[™] Kits
 - Concentration
 - Microcon[®] YM-100 Centrifugal Columns
 - Amplification
 - Promega[®] PowerPlex[®] 16/PowerPlex[®] 16 HS Amplification Kits
 - ABI Identifler[®]/Identifler[®] Plus Amplification Kits

Tested LM Processing Techniques

Recommended Workflow

- LM Cells → ZyGEM[™] Extraction → Microcon[®]
 Concentration → PowerPlex[®] 16 HS Amplification
 - With this workflow, as few as 25 cells may be successfully amplified without any alterations to manufacturer's protocols
 - Laboratories considering employing LM techniques should evaluate what extraction methods and amplification systems work best for them

Technology Transition Workshop

LM/FISH Summary

- The combination of LM and FISH methods has created a tool to effectively process previously unusable items of evidence
- FISH processing utilizing X/Y probes is a novel method for differentiating male and female cells

Technology Transition Workshop

Image courtesy of Rob Driscoll

Future FISH Studies

- New systems are being explored that may allow for differentiation of cell mixtures of same morphology and gender
 - FISH probes designed to visually identify the genetic differences in the ABO blood group
 - FISH probes designed to visually identify single nucleotide polymorphisms (SNPs) differences in individuals

Future FISH Studies

Proposed ABO Probe Screening System

- The ABO screening system will consist of three fluorescent marking dyes (TRITC, FITC, and CY5)
 - Allele A subtype-specific probes will be tagged with red dyes (TRITC)
 - Allele B subtype-specific probes will be marked with green dyes (FITC)
 - Allele O subtype-specific probes will be labeled with yellow dyes (CY5)
- Homozygous samples will exhibit monochromatic fluorescence while heterozygotes will be identified by the presence of two colors

ABO Blood Group FISH Assay Scenarios

	ABO Genotype	Visual #1	Visual #2		
	AA or AO				
	BB or BO				
	AB		None		
	00		None		
	Failed (examples)		I		
mages courtesy of R	ages courtesy of Rob Driscoll				

Future FISH Studies

Proposed SNP Probe Screening System

- The proposed SNP probe screening system will consist of six fluorescent marking dyes:
 - Red (
 - Aqua (____)
 - Green (
 - Gold (
 - Orange (
 - Far red (____)

Technology Transition Workshop

Future FISH Studies

Proposed SNP Probe Screening System

- The screening panels will target 10 SNP loci that have high heterozygosity, low genetic variance, and are unlinked
- A testing set of two panels (slides) will be constructed for an evidence sample with each panel targeting five specific sites

LM/FISH Implementation

 Bode Technology anticipates the validation and implementation of LM/FISH techniques in the near future

Images courtesy of Rob Driscoll and Abby Bathrick

Commerically Available LM Instruments

- Arcturus^{XT™}
 - Life Technologies:
 - www.appliedbiosystems.com
- PALM[®] MicroBeam
 - Zeiss:
 - www.palm-microlaser.com
- mmi CellCut[®]
 - Molecular Machines and Industries:
 - www.molecular-machines.com
- Leica™ LMD7000
 - Molecular Devices:
 - www.leica-microsystems.com

Technology Transition Workshop

Discussion for Labs with LM Capabilities

- What instrument does your lab possess?
- What challenges have you faced with implementing the new technology?
- Have you experienced any successes?
- Any advice for those labs considering a purchase or encountering difficulties?

Discussion for Labs without LM Capabilities

- Do you see LM instrumentation as a useful tool for your laboratory?
- Do you see FISH as a useful tool for your laboratory?
- Do you have cases these techniques may be useful for?
- What do you see as the advantages and disadvantages of LM/FISH technology?

Final Questions? Final Comments?

Physical Separation of Forensic Mixtures Using Laser Microdissection Techniques

Closing Discussion

Contact Information				
Bode Technology 10430 Furnace Rd., Suite 107 Lorton, VA 22079				
Dr. Robert Bever	Robert Driscoll			
703-646-9811	703-646-9812			
Robert.Bever@bodetech.com	Robert.Driscoll@bodetech.com			
Heather Cunningham	Abigail Bathrick			
703-646-9765	703-646-9752			
Heather.Cunningham@bodetech.com	Abby.Bathrick@bodetech.com			
	Technology Transition Workshop			