

Laser Microdissection Methods

Carl Zeiss[®] PALM[®] MicroBeam System

- Flexible applications from archival material to living cells for DNA isolation
- Patented laser catapult technology for contact- and contamination-free specimen capture
- Automated script search programs for items of interest
- Optimal workflow with simple component integration: from individual experiments to automation

Image from: http://www.zeiss.com/c12567a10053133c/Contents-Frame/19ca656fd8df9adcc12575380027efea

Technology Transition Workshop

Carl Zeiss[®] PALM[®] MicroBeam System

- PALM[®]
 MicroBeam
 System consists of:
 - Axiovert[®] 200 microscope
 - Fluorescence illumination unit
 - Laser interface and laser
 - Computer

Technology Transition Workshop

Image from: Carl Zeiss[®] PALM[®] MIcroBeam User Manual, Version 1105, page 5

Physical Separation of Forensic Mixtures Using Laser Microdissection Techniques

Laser Microdissection Methods

Axiovert[®] 200 Microscope

Technology Transition Workshop

Image from: Operating Manual Axiovert[®] 200 / Axiovert[®] 200 M, page 0-13

Physical Separation of Forensic Mixtures Using Laser Microdissection Techniques

Laser Microdissection Methods

Carl Zeiss[®] PALM[®] MicroBeam System

Laser path

- Guided through the microscope adapter into the epifluorescence channel of the microscope
- Reflected by a special coated beam splitter
- Focused by the objective

Image from: Carl Zeiss [®] PALM[®] MicroBeam User Manual, Version 1105, Page 15

Slides

Membrane-coated slides

- Polyethylene naphthalate (PEN) membrane-coated slides
 - Requires less laser energy for cutting and catapulting
 - Pores in the membrane auto-fluoresce, making it difficult to detect true FISH signals
- Polyethylene tetraphtalate (PET) membrane-coated slides
 - Requires more laser energy for cutting and catapulting
 - No membrane fluorescence

Slides

Glass slides

- No fluorescent background caused by the slide
- Cells are catapulted without cutting
- Once fixed to the slide, cells may difficult or impossible to remove from slide
 - High laser energy combined with multiple firings for successful catapulting

Technology Transition Workshop

Collection Devices

- AdhesiveCap 500
 - 500 μl PCR tube
 - Cap filled with clear adhesive material for buffer-free sample capture
- 0.5 ml microcentrifuge tubes
 - Flat top tube
 - Pipette 20 40 μ l of H₂O or buffer in the cap
 - Surface tension keeps the liquid inside the cap

Carl Zeiss[®] PALM[®] MicroBeam System

- PALM[®] RoboMover
 - Automated positioning of caps over the sample to be collected
 - Interchangeable inserts allow for use of various collection vessels
- PALM[®] RoboStage
 - Motorized microscope stage
 - Various holders for Petri dishes, capillary tubes, and up to 3 slides
- Advanced Fluorescence Attachment
 - Module allows for simultaneous laser function *Technology under fluorescence illumination Transition Workshop*

Carl Zeiss[®] PALM[®] MicroBeam System

The PALM®
 EightTube
 Collector insert
 holds eight
 0.5 ml
 microcentrifuge
 tubes

Technology Transition Workshop

Image courtesy of Abby Bathrick

PALM[®] RoboSoftware

- Facilitates operation and control of the Carl Zeiss[®] PALM[®] MicroBeam System
 - Display of microscope image on the monitor
 - Storage of image viewed on the monitor
 - Software controlled movement of the stage
 - Definition of lines and areas (elements) for further processing with the laser
 - Automatic cutting along defined lines followed by catapulting
 - Creation of automated sperm search scripts

PALM[®] RoboSoftware

LM Forensic Research

Sperm Search Script Development

- The PALM[®] system includes automated scanning programs which allow one to differentiate and select targets based on size, shape and color
- Scripts were developed for the automated identification of sperm cells stained with:
 - Christmas tree stain
 - Haematoxylin
- Scripts scan an area of interest on a slide and automatically identify elements of interest

Technology Transition Workshop

LM Forensic Research Christmas Tree Sperm Search Script

- The final version of the Christmas tree sperm identifier script exhibited:
 - 76% true positive identifications
 - 24% false negative identifications
 (i.e., missed sperm)
 - 14.4% false positive identifications
 (i.e., incorrect labeling)

Technology Transition Workshop

Image courtesy of Rob Driscoll

LM Forensic Research Haematoxylin Sperm Search Script

- The final version of the Haematoxylin stain sperm identifier script exhibited:
 - 82% true positive identifications
 - 18% false negative identifications (i.e., missed sperm)
 - 12.8% false positive identifications (i.e., incorrect labeling)

Technology Transition Workshop

Image courtesy of Rob Driscoll

LM Forensic Research

Final Conclusions for Sperm Search Scripts

- Overall, the scripts serve as an effective sperm search method for automated purposes
- The use of these scripts will not eliminate the need of an analyst to review the findings of the software
- On average, the scripts will erroneously miss identification of 24.3% of all sperm in a scanned field
- The combination of software scanning and human manual review can ensure the efficient processing of slides containing sperm and epithelial cell mixtures

Optimization of LM Sample Processing Techniques

- Evaluation of extraction and amplification methods
- Goals:
 - Improve DNA yield of low copy number (LCN) LM collected samples
 - Reduce time required to process LM collected samples

Optimization of LM Sample Processing Techniques: Elution of Cells from Swab

- 1. Cut entire swab into 1.5 ml tube, and add 500 μ l 1X PBS.
- 2. Incubate at room temperature with shaking at 900 rpm for approximately 2 hours.
- 3. Transfer sample to pre-assembled centrifuge filter basket in a 1.5 ml tube.
- 4. Spin for 10 minutes at 10,000 rpm.
- 5. Remove and discard supernatant.
- 6. Wash pellet with 500 μ l 1X PBS.
- 7. Pipette up and down to mix, then spin for 10 minutes at 10,000 rpm.
- 8. Remove and discard supernatant.
- 9. Resuspend cells in Carnoy's fixative (3:1 methanol/acetic acid).

Technology Transition Workshop

Optimization of LM Sample Processing Techniques: Slide Preparation

- Spread 20 μl of sample onto a PEN membrane slide and fixate using a slide warmer set to 56°C for 2 minutes.
- 2. Incubate for 1 minute in 70% ethanol.
- Using the Carl Zeiss, Inc.[®] PALM[®] MicroBeam System, cut and catapult cells into the caps of 0.5 ml tubes containing 20 to 25 μl ddH₂O.
 - AdhesiveCaps used for QIAamp[®] DNA Micro Kit extractions

Transition Workshop

Extraction Evaluation

- QIAGEN[®] QIAamp[®] Micro Kit
 - Manual extraction
 - DNA binds to a silica membrane in the presence of chaotropic salt
 - DNA is washed and eluted from the membrane
- EZ1[®] DNA Investigator Kit
 - Robotic extraction
 - DNA binds to silica-coated magnetic beads in the presence of chaotropic salt
 - DNA is washed and eluted from the beads
- ZyGEM[™] forensicGEM[™]
 - Single tube extraction method
 - Uses a thermophilic proteinase to lyse cells, degrade nucleases, and release DNA
 - Enzyme is heat inactivated

QIAGEN[®] QIAamp[®] Micro Kit Extraction Procedure

- 1. Post LM, incubate caps in low volume Proteinase K/ Buffer ATL mixture at 56°C for 1 to 2 hours.
- 2. Add DTT to sperm extractions.
 - Laser-Microdissected Tissues Protocol via QIAGEN[®] Handbook
- 3. Spin caps down with attached tubes and additional QIAGEN[®] buffers (with carrier RNA), and add ethanol to increase sample volume for optimal column binding.
- 4. Concentrate sample via Microcon[®] down to approximately 5 to 10 μl.

LM Forensic Research Results

Identifiler[®] Profile Generated from 10 Captured Epithelial Cells

QIAGEN[®] EZ1[®] DNA Investigator Kit Extraction Procedure

- Post LM, incubate sample in low volume Proteinase K/Buffer G2 mixture at 56°C for 1 to 2 hours.
- 2. Add carrier RNA to sample.
- 3. Transfer sample to EZ1[®] 2.0 ml skirted sample tubes and run on robot with EZ1[®] DNA Investigator cartridge.
- 4. Concentrate sample via Microcon[®] down to approximately 17.6 μl.

Transition Workshop

ZyGEM™ forensicGEM™ Extraction Procedure

- Post LM, incubate samples with thermophilic enzyme, optimized buffer, and ddH₂O mixture at 75°C for 15 minutes and at 95°C for 5 minutes.
- 2. Concentrate sample via Microcon[®] down to approximately 17.6 μl.

EZ1[®] vs. ZyGEM™ Extraction Evaluation

- 25 to 50 cells collected in triplicate via LM
- **ZyGEM[™]** and **EZ1[®]** extractions
- Concentrated using Microcon[®] YM-100 Columns
- Amplified using the PowerPlex[®] 16 HS amplification (25 µl/32 cycles)

EZ1[®] vs. ZyGEM[™] Extraction Evaluation

	ZyGEM™	EZ1®	
50 cells			
Average Height	338 RFU	435 RFU	
Average Balance	80.0 %	72.5%	
Dropout	5.2% of alleles*	0 alleles	*Dropout in
Balance < 50%	4.2% of loci	6.3% of loci	ZyGEM [™] samples
25 cells			D18. Penta F.
Average Height	338 RFU	250 RFU	Penta D
Average Balance	76.7%	63.7%	
Dropout	4.2% of alleles	2.1% of alleles	
Balance < 50%	2.1% of loci	16.7% of loci	
Extraction Duration	20 minutes	1 hour 16 minutes	
Extraction Type	Single tube	Robotic	
Loci	Balanced	Imbalanced	Technology Transition Workshop

Physical Separation of Forensic Mixtures Using Laser Microdissection Techniques

Amplification System Evaluation

- 50 cells were collected in triplicate using the PALM[®] MicroBeam System
- Cells were catapulted into the caps of 0.5 ml tubes containing 20 to 25 μl ddH₂O
- Extraction was performed using EZ1[®]
- Concentrated using Microcon[®] YM-100 Columns
- Amplified using the following amplification systems:
 - PowerPlex[®] 16 HS (25 μl/32 cycles)
 - PowerPlex[®] 16 (25 μl/30 cycles)
 - Identifier[®] (25 μl / 28 cycles)

Technology

Transition Workshop

Amplification System Evaluation

Promega[®] PowerPlex[®] 16 HS

- Amplifies 15 loci, plus Amelogenin
- 32 cycles
- Kit components:
 - PowerPlex[®] 16 HS 10X Primer Pair Mix
 - PowerPlex[®] HS 5X Master Mix
 - Includes hot start Taq DNA polymerase
 - PowerPlex[®] 16 HS Allelic Ladder Mix
 - Internal Lane Standard 600
 - Water, amplification grade
 - 9947A DNA
- 3100 Genetic Analyzer parameters (manufacturer's recommendation):
 - **3kv_10**s
 - 1 μl of amplification product

Technology Transition Workshop

Physical Separation of Forensic Mixtures Using Laser Microdissection Techniques

Laser Microdissection Methods

Amplification System Evaluation

Promega[®] PowerPlex[®] 16

- Amplifies 15 loci, plus Amelogenin
- 30 cycles
- Kit components:
 - PowerPlex[®] 16 10X Primer Pair Mix
 - GoldST ★ R 10X Buffer
 - PowerPlex[®] 16 Allelic Ladder Mix
 - Internal Lane Standard 600
 - 9947A DNA
- 3100 Genetic Analyzer parameters:
 - 3kv_10s
 - 0.6 μ l of amplification product

Technology Transition Workshop

Physical Separation of Forensic Mixtures Using Laser Microdissection Techniques

Laser Microdissection Methods

Amplification System Evaluation

Applied Biosystems™ AmpF&STR® Identifiler®

- Amplifies 15 loci, plus Amelogenin
- 28 cycles
- Kit components:
 - Identifiler[®] Primer Set
 - PCR Reaction Mix
 - AmpliTaq Gold[®] DNA Polymerase
 - Identifiler[®] Allelic Ladder
 - Control 9947A DNA
- 3100 Genetic Analyzer parameters:
 - 3kv_10s
 - 0.7 µl of amplification product

Technology Transition Workshop

Physical Separation of Forensic Mixtures Using Laser Microdissection Techniques

Laser Microdissection Methods

Amplification System Evaluation

50 Cells	PowerPlex [®] 16 HS	PowerPlex [®] 16	Identifiler®
Average Height	554 RFU	221 RFU	142 RFU
Average Balance	80.6%	86.3%	74.2%
Dropout	8.3% of alleles	4.2% of alleles	16.7% of alleles
Balance < 50%	0 loci	2.1% of loci	4.2% of loci
Cycles	32 cycles	30 cycles	28 cycles
Cost	\$17.61 per sample	\$16.22 per sample	\$17.33 per sample

Technology Transition Workshop

Summary of LM Sample Processing **Optimization**

- **Recommended procedure:**
 - Cells \rightarrow ZyGEMTM extraction \rightarrow Microcon[®] concentration \rightarrow — **PowerPlex® 16 HS amplification**
- As few as 25 cells may be successfully amplified without any alterations to manufacturer's protocols
- Use of ZyGEM[™] extraction may reduce some of the stochastic effects commonly seen in LCN samples
- ZyGEM[™] extraction may result in allelic dropout at larger loci

Physical Separation of Forensic Mixtures Using Laser Microdissection Techniques

Laser Microdissection Methods

Contact Information

Bode Technology 10430 Furnace Rd., Suite 107 Lorton, VA 22079

Robert Driscoll

703-646-9812

Robert.Driscoll@bodetech.com

Heather Cunningham

703-646-9765

Heather.Cunningham@bodetech.com

Technology Transition Workshop

