

Technology Transition Workshop | Robert Driscoll, M.F.S.

Heather Cunningham, M.S.

Introduction to Fluorescent In Situ Hybridization (FISH)

Fluorescent In Situ Hybridization (FISH)

- FISH is a cytogenetic technique used to detect the presence or absence of specific chromosomes and/or sequences
- Interphase FISH techniques incorporate probes which pass through cellular membranes and into the nucleus eliminating the need to lyse cells during processing
- Fluorescence compatible microscopes are typically employed to visualize the multicolor probes used in these hybridizations

Traditional FISH Applications

- Used to detect a variety of diseases caused by chromosomal abnormalities:
 - Prader-Willi Syndrome
 - Angelman Syndrome
 - Cri-du-chat
 - Down Syndrome
 - Chronic myelogenous leukemia
 - Acute lymphoblastic leukemia
- Used to compare genomes of two biological species to deduce evolutionary relationships
- Gene mapping

Prenatal Screening for Down Syndrome

Normal FISH assay displaying 2 copies of chromosome 21

Image courtesy of: http://www.parkavefertility.com/pre-implantation_genetic_diagnosis.html

Prenatal Screening for Down Syndrome

Trisomy 21 (Down Syndrome) - 3 copies of chromosome 21

Image courtesy of: http://www.parkavefertility.com/pre-implantation_genetic_diagnosis.html

Technology
Transition Workshop

Methodology of LM-FISH Processing

- Isolate cells of evidence mixtures
- Identify contributor by gender
- Capture, process, and generate clean profile

Technology Transition Workshop

Images courtesy of Rob Driscoll

FISH Overview

- Preparation of slide
- Pre-treatment
 - Prepare sample for hybridization by reducing background fluorescence
- Hybridization
 - Apply probes and hybridization buffer to the sample
 - Denature and hybridize sample/probes
- Post-hybridization
 - Remove excess probe and salts
 - Apply DAPI counterstain to stain nucleus blue and increase fluorescence of probes

Preparation of Slide

- Elute cells from substrate.
- 2. Re-suspend cells in Carnoy's fixative.
 - 3:1 methanol/glacial acetic acid
 - Fixes cells to slides
 - Helps cells spread well
- 3. Steam slide for 5 seconds.
 - Allows for further membrane spreading
- 4. Dry on slide warmer.
- Bake in biological oven.
- 6. Store in desiccator overnight.

Pre-Treatment

- SSC buffer wash
 - Isotonic buffer solution
 - Contains sodium chloride and sodium citrate
- Pepsin buffer wash
 - Protease digests the cell wall and cytoplasm, leaving the nucleus behind
 - Increases fluorescence of probes by reducing background fluorescence caused by cytoplasm

Pre-Treatment

Effect of pepsin buffer on cells

10 minute pepsin buffer wash

No pepsin buffer wash

Pre-Treatment Steps

- PBS/MgCl2 wash
 - Removes pepsin buffer from slide
- Formalin (or formaldehyde) buffer wash
 - Reduces background fluorescence
- PBS wash
- Serial ethanol washes
 - Dehydrates cells
- Slides are stored in dessicator until hybridization

Pre-Treatment

Serial ethanol washes

Technology Transition Workshop

Image courtesy of Rob Driscoll

- 1. Identify the DNA probe and a target sequence.
- 2. Probe is labeled.
- 3. Labeled probe and target DNA are denatured.
- 4. Denatured probe and DNA are combined and complimentary DNA sequences anneal.
- Indirectly labeled probe undergoes additional processing for visualization.

Image from reference #9 (See Handout, Relevant Scientific Literature)

Technology
Transition Workshop

Hybridization Buffer

- **Contains:**
 - Formamide denaturing agent
 - SSC isotonic buffer, controls salt concentration
 - Dextran sulfate high molecular weight polymer
- Buffer components and hybridization temperature affect the stringency
 - Stringency adjustment of conditions to control hybridization of the probe binding to the target sequence
 - The higher the stringency, the lower the probability of hybridization
 - High stringency high temp, lower salt concentration
 - Low stringency low temp, higher salt concentration

Hybridization Probes

- Chromosome enumeration probes (CEP®) bind to highly conserved sequences of individual chromosomes
 - Highly repetitive human satellite DNA sequences
 - Strong, crisp signals
- CEP Y[®] Satellite III SpectrumOrange™
 - Y chromosome hybridized with TRITC-labeled CEP Y[®]
 (DYZ1) probe (orange)
- CEP X[®] Alpha Satellite SpectrumGreen™
 - X chromosome hybridized with FITC-labeled CEP X[®]
 (DXZ1) probe (green)

FISH - Male Epithelial Cells CEP Y® Satellite III SpectrumOrange™

- CEP Y[®] (DYZ1)
 SpectrumOrange™
 probe
 - Chromosome positionYq12
 - Aquired via Abbott Molecular®/Vysis™
 - TRITC fluorophore
- Blue DAPI counterstain

Image courtesy of Rob Driscoll

Technology
Transition Workshop

FISH – Female Epithelial Cells CEP X® Alpha Satellite SpectrumGreen™

- CEP X[®] (DXZ1)
 SpectrumGreen[™] probe
 - Chromosome position Xp11.1
 - Aquired via Abbott
 Molecular®/Vysis™
 - FITC fluorophore
- Blue DAPI counterstain

Technology
Transition Workshop

Images courtesy of Rob Driscoll

- Denaturation: Breaks the hydrogen bonds between double-stranded segments of DNA, allowing new bonds to form between the probes and target DNA during hybridization
- Denaturant solution contains formamide, SSC, and water
- **Process:**
 - Denature at 75 to 80°C in a water bath.
 - Complete serial ethanol washes.
 - Dehydrates the cells
 - Combine hybridization buffer, probes, and water.
 - Denature at 75 to 80°C in a water bath

 Hybridization: Probes specifically hybridize to their complementary sequences on the target DNA

Process:

- Apply denatured probes to the denatured sample slide.
- 2. Cover with coverslip.
- 3. Seal with rubber cement.
 - Prevents evaporation of sample
- 4. Hybridize at 37 to 42°C in a humidified chamber.

Sealing coverslip with rubber cement to prevent evaporation of sample

Technology Transition Workshop

Images courtesy of Rob Driscoll

- Co-denaturation and hybridization on StatSpin®
 ThermoBrite™ Slide Hybridization/Denaturation
 System
 - 1. Combine hybridization buffer, probes, and water.
 - Apply to slide.
 - 3. Cover with coverslip.
 - 4. Seal with rubber cement.
 - 5. Denature at 73°C.
 - 6. Hybridize at 37 to 42°C.

StatSpin® ThermoBrite™ Slide Hybridization/Denaturation System

- Microprocessor controlled bench top hot plate with lid
- Three operating modes: denaturation, hybridization, fixed temperature
- Stores 40 programs
- 12 slide capacity
- Humidity control to prevent evaporation of samples from slides
- Purchased to provide a more controlled environment for heating slides
 - Increased consistency and reproducibility of temperatures

- Use of re-useable perfusion chambers in combination with the ThermoBrite™ eliminates the need for water baths
 - 1. Place chamber on the slide.
 - 2. Fill chamber with buffer.
 - 3. Place slide on the ThermoBrite™ for incubation.

Technology Transition Workshop

Image courtesy of Rob Driscoll

Technology Transition Workshop

Image courtesy of: http://international.abbottmolecular.com/ThermoBrite 7633.aspx#

Post-Hybridization

- SSC/Tween® 20 wash buffer
 - High stringency wash
 - Removes excess unbound probe
- SSC wash
 - Low stringency wash
- Water rinse
 - Removes residual buffer salts to reduce nonspecific background fluorescence
- DAPI VECTASHIELD® counterstain
 - Fluorescent nuclear stain (blue)
 - Increases fluorescence of probes

- Utilize Vysis™ CEP X® Alpha Satellite and CEP Y®
 Satellite III probes to visually identify male and
 female cells.
- 2. Apply a DAPI counterstain to stain nuclei.
- Detect fluorescently labeled nuclei using DAPI/FITC/TRITC bandpass filters.
- 4. Capture cells using a laser microdissection system.

DAPI filter for detection of nuclei

Technology Transition Workshop

Rhodamine filter for detection of Y chromosome

Technology Transition Workshop

FITC filter for detection of X chromosome(s)

Technology Transition Workshop

Male White Blood Cells Stained with X and Y FISH Probes

Technology Transition Workshop

Image courtesy of Rob Driscoll

Male/Female Epithelial Cell Mixture

Technology Transition Workshop

Images courtesy of Rob Driscoll

Initial STR Profiling of FISH Samples

- Profiles generated from the separation of approximately 30 FISH-treated male and 30 FISH-treated female epithelial cells from a 1:1 mixture
- Extracts were amplified for 30 cycles in a 7 μl Identifiler® reaction
- Demonstrates a clean separation of male and female components

Images courtesy of Rob Driscoll

Technology Transition Workshop

Initial STR Profiling of FISH Samples

15 FISH-Stained Male White Blood Cells Separated From a Male/Female White Blood Cell Mixture

Technology Transition Workshop

Image courtesy of Rob Driscoll

Initial STR Profiling of FISH Samples

Profile From 15 FISH-Stained Male Epithelial Cells Separated From a Male Epithelial/Female White Blood Cell Mixture

Technology Transition Workshop

Ongoing Research

- The current FISH X/Y probing technique is limited
 - Only allows for separation of cells of different gender
- Research is underway regarding the use of FISH and LM to separate same gender mixtures
- Key objective is to separate cellular mixtures of similar morphology and same gender by using sequence-specific FISH probes based upon the genetic polymorphisms associated with SNPs and the ABO blood groups

Ongoing Research

- SNPs and the ABO blood groups were chosen as the basis for these assays because of the existence of their prevalent polymorphisms throughout multiple populations
- Both systems have multiple polymorphisms which can be targeted through multicolor probe assays
- Primer probes can be designed to target genetic loci associated with SNPs and the ABO blood groups to allow for visual identification of individuals in forensic mixtures

Advantages of FISH

- Allows for differentiation of male and female cells of similar morphological mixtures
- Allows for successful processing of previously unusable items of evidence
- Reduces need for complicated LCN mixture deconvolution

Limitations of FISH

- 8 to 10 hours for FISH processing
- Probes are \$30 per μl
- Difficult to troubleshoot because multiple factors can affect successful hybridization
- Formalin and hybridization buffers contain toxic chemicals

Summary

- FISH processing utilizing X/Y probes is a novel method for differentiating male and female cells of similar morphological mixtures
- New systems are being explored that may allow for differentiation of cell mixtures of same morphology and gender

Contact Information

Bode Technology 10430 Furnace Rd., Suite 107 Lorton, VA 22079

Robert Driscoll

703-646-9812

Robert.Driscoll@bodetech.com

Heather Cunningham

703-646-9765

Heather.Cunningham@bodetech.com

