

Technology Transition Workshop | Robert Bever, Ph.D.

Robert Driscoll, M.F.S.

Heather Cunningham, M.S.

Abigail Bathrick, M.F.S.

### Welcome and Introductions

### **Introductions**

- Bode Technology
  - Robert Bever, Ph.D.
  - Robert Driscoll, M.F.S.
  - Heather Cunningham, M.S.
  - Abigail Bathrick, M.F.S.
- NFSTC
  - Joan Ring, M.S.
  - Karolyn Tontarski, M.S.



### **Bode Technology Overview**

- Provides forensic DNA analysis, DNA collection products, and research services to law enforcement agencies, federal and state governments, crime laboratories, and disaster management organizations
- Identified criminals in nearly every U.S. state, as well as victims of war, terrorism, crime, and natural disasters throughout the world



### **Bode Technology Overview**

- Identified remains of U.S. soldiers and victims from the World Trade Center attack, the war in Bosnia, Hurricane Katrina, and the Thailand tsunami
- Over 12 years of experience in the development of techniques associated with the analysis of challenging DNA forensic samples
- Processed over 1 million convicted offender samples, thousands of touch evidence samples from burglary and property crimes, and hundreds of chemically processed fingerprints samples



### **Bode Technology Facilities**

- ASCLD/LAB, FQS-I ISO/IEC 17025 accredited
- Laboratories have seamless floors, pass-through windows, HEPA-filters, and controlled access
- Large pre-amp laboratory with smaller connected laboratories for screening, extraction and research and development work



### **Bode Technology Facilities**

- Post-amp laboratory equipped with:
  - Nine 3100 and four 3130xl Applied Biosystems™
     Genetic Analyzers
  - Two Applied Biosystems™ 7000 Real-Time PCR
     Systems and three 7500 Real-Time PCR Systems
  - Twenty-four 9700 and three 9600 Applied
     Biosystems™ Thermal Cyclers
- Arcturus® PixCell® II and Carl Zeiss® PALM®
   MicroBeam laser microdissection (LM) systems



# Safety

- Personal Protective Equipment (PPE)
  - Always wear proper clothing and footwear
    - Legs and feet must be completely covered at all times
  - Always wear a lab coat, goggles, and gloves in the labs
  - Wear a respirator when handling hazardous chemicals
- Eyewash/shower stations
  - Stations are located in each of the labs
    - Running water stations (Main Lab and Research)
    - Saline eye rinse stations (Serology only)
  - Flush eyes or stand under shower for at least 15 minutes



# Safety

- MSDS Read every MSDS prior to chemical usage
  - Hazardous
    - Hybridization Buffer contains formamide
    - Formalin formaldehyde solution; toxic by inhalation, absorption, and consumption; corrosive and carcinogenic
    - Magnesium chloride hexahydrate requires extreme caution; has delayed effects on CNS, kidneys, and GI tract through inhalation, absorption, and consumption
    - Hydrochloric acid corrosive
  - Most others are irritants
  - Wear respirator when handling hazardous chemicals
  - Wash your hands upon exiting the lab

# Safety

- Evacuation procedures
  - In the event of an emergency, listen to and follow the instructor to the designated meeting point outside of the building
- Chemical spill or medical emergency
  - If a chemical is spilled or someone needs medical attention, immediately ask the lab instructor to contact the Assistant Safety Officer, Hannah Gillis
  - If for some reason the lab instructor is unavailable, use the intercom to page Hannah Gillis (x601)
- If you have any questions, please ask



### Experience with LM Techniques

- FBI Contract J-FBI-05-178
  - Investigate and determine which LM instrument is best for separating the individual components of sexual assault mixtures
  - Develop automated sperm search programs for the chosen LM instrument
  - Evaluate effectiveness of instrument when used with samples of various age, ratio, and originating substance



### Experience with LM Techniques

- NIJ Contract # 2006-DN-BX-K032
  - Physical separation and collection of male and female cells using the Arcturus<sup>®</sup> PixCell<sup>®</sup> II and Carl Zeiss <sup>®</sup>
     PALM<sup>®</sup> Microbeam laser microdissection systems
  - Identification of male and female cells using fluorescent in situ hybridization (FISH) techniques
  - Optimization of downstream processing for LM collected samples



### Experience with LM Techniques

- NIJ Contract # 2008-IJ-X-K016
  - Separate cellular mixtures of similar morphology and same gender by using sequence-specific FISH probes based upon the genetic polymorphisms associated with the Duffy and ABO blood groups
- NIJ Contract # 2009-DN-BX-K250
  - Separate cellular mixtures of similar morphology and same gender by using sequence-specific FISH probes based upon human SNP genetic variations
  - Use of laser microdissection to optimize front-end
     LCN sample processing techniques



## Workshop Purpose

- Provide workshop attendees with an introduction to the:
  - Forensic uses of LM instruments
  - Various platforms available
  - Techniques available for sample processing



### Agenda Review

### Workshop attendees will split into two groups of 6:

#### **Lecture Session:**

- Introduction to LM
- Introduction to FISH
- LM methods
- Role of LM and FISH in the forensic laboratory
- Overview of commercially available
   LM instruments
- Closing remarks

### **Laboratory session:**

- Slide preparation
- FISH methods
- Separation of mixture samples via LM
- Sample extraction, amplification, and data interpretation



### **Evidence Mixtures**

- The generation of clean, single source genetic profiles from sexual assault and touch evidence cellular mixtures continually proves to be a difficult challenge in forensics
- Evidence of this nature can contain trace amounts of human DNA from mixtures of cell types of various morn



Image courtesy of Rob Driscoll

- of cell types of various morphologies
- Commonly utilized DNA extraction techniques for the purposes of cellular separation are laborious and not always effective

### **Laser Microdissection**

- A method of isolating and collecting cells of interest from biological samples and mixtures
- Allows for a scientist to perform single source genomic interpretation on samples originating from multi-cellular tissues or mixtures
- Utilized primarily in medicine for cancer diagnostics and in forensics for mixture separations



## LM History

- A biomedical technique used for isolating cells of interest from tissues or mixtures
- Laser is focused upon the surface of a specimen slide to "cut" or "separate" sections of interest
- Technology first emerged in the late 1960s and early 1970s using argon lasers
  - Instrumentation was not suitable for routine use
  - Specificity of dissection points was not optimal



### LM History

- Revival of technique occurred during the mid-1990s at the National Institutes of Health (NIH)
  - UV lasers and laser capture microdissection
- Now routinely used in medical research for DNA, RNA, and protein analysis



Images from reference # 10 (See Handout, Relevant Scientific Literature)

## LM History

- LM can be performed on a variety of biological specimens:
  - Solid tissue
  - Cytologic preparations
  - Blood smears
  - Paraffin embedded tissue
  - Archival slides
- LM has only just recently (< 6 years) been utilized</li> within the forensic community

### Interphase FISH Techniques

- FISH is a cytogenetic technique used to detect the presence or absence of specific chromosomes and/or sequences
- Interphase FISH techniques incorporate probes which pass through cellular membranes and into the nucleus eliminating the need to lyse cells during processing
- Fluorescence compatible microscopes are typically employed to visualize the multicolor probes used in these hybridizations



## FISH History

- In situ hybridizations (ISH) utilizing probes labeled with radioisotopes were first performed in the late 1960s
- Fluorescent in situ hybridization (FISH) was developed as an alternative method in the 1980s
  - Use of fluorescent probes led to increased resolution, speed, and safety
  - Allowed for detection of multiple targets, quantitative analysis, and live cell imaging



# **FISH History**

- Use in cytogenetics
  - Whole chromosome painting
    - Deletions and duplications of chromosomal regions are detected by different fluorescent signals
  - Detection of diseases caused by chromosomal abnormalities
    - Down Syndrome
  - Cancer prognosis
    - Breast cancer detection of multiple copies of gene HER2



# **FISH History**

- Chromosome painting:
   FISH identification of human chromosomes
  - Fluorescent probes
     specific to regions of
     particular chromosomes
     are hybridized to a
     chromosome spread
  - Small variations in fluorescence are detected and enhanced
  - The resulting computer generated image is called a "false color" image



Technology Transition Workshop



Image from reference # 5 (See Handout, Relevant Scientific Literature)

### LM and FISH in Forensics

- LM and FISH processing provide a tool for processing previously unusable items of evidence
  - Mixture is detected
  - Sample is processed with LM/FISH
  - Clean, interpretable profiles are generated





# **Contact Information**

Bode Technology 10430 Furnace Rd., Suite 107 Lorton, VA 22079

| l | Dr. Robert Bever                   | Robert Driscoll                  |
|---|------------------------------------|----------------------------------|
|   | 703-646-9811                       | 703-646-9812                     |
|   | Robert.Bever@bodetech.com          | Robert.Driscoll@bodetech.com     |
|   |                                    |                                  |
|   | Heather Cunningham                 | Abigail Bathrick                 |
|   | Heather Cunningham<br>703-646-9765 | Abigail Bathrick<br>703-646-9752 |

