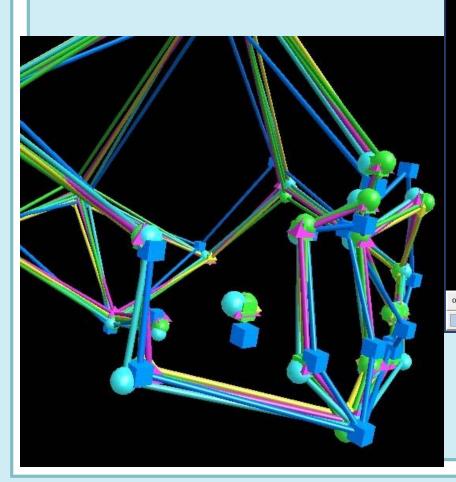
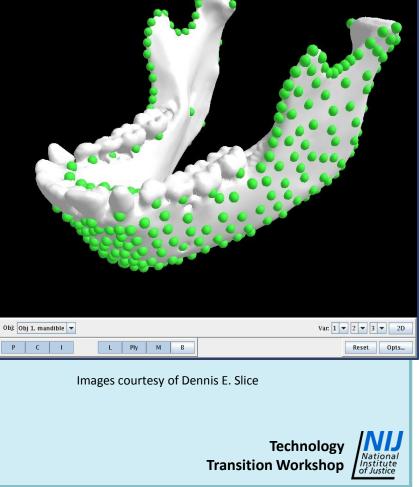


Morphometrics




Advances in Forensic Anthropology TTW

Fundamentals of Traditional Craniometrics and Geometric Morphometrics

★ m_vis - morphometric visualization (c) 2006 Dennis E. Slice File Graphic Objects Help QuickLoad

_ 0 >

Definitions

- Shape the geometric properties of an object that are invariant to location, scale, and orientation
- Shape variable any geometric measure of an object that is invariant to the location, scale, and orientation of the object

Fundamentals of Traditional Craniometrics and Geometric Morphometrics

From Slice (2005)

Definitions - Cont'd

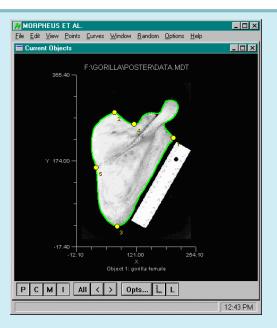
- Size measure any positive, real-valued measure of an object that scales as a positive power of the geometric scale of the form
- Form data containing only size and shape
- Geometric morphometrics collection of methods for the acquisition, processing and analysis of shape variables that retain *all* of the geometric information contained within the data

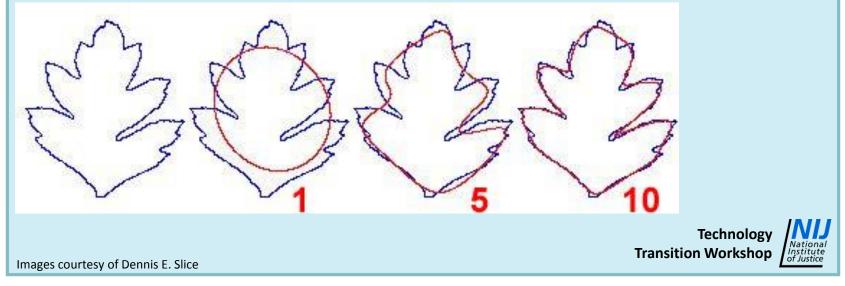
From Slice (2005)

Definitions – Streamlined

- Morphometrics: the study of shape, shape variation, and covariation of shape with extrinsic factors
- Shape: the geometric properties of a specimen's invariant location, orientation, and scale
- Form: shape + size
- Geometric Morphometrics: morphometric methods that retain maximum geometric information throughout an analysis

Resources

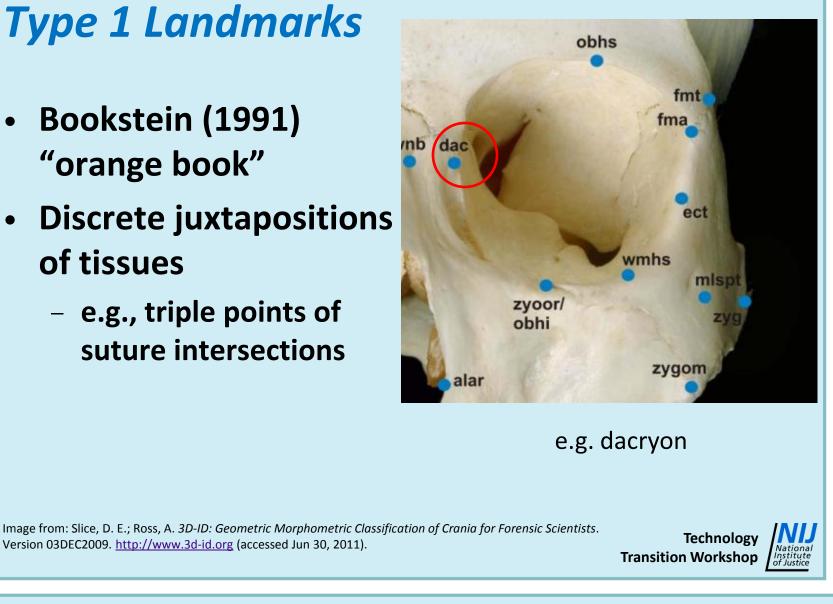

- Slice, D.E. Modern Morphometrics in Physical Anthropology; Kluwer Academic, Plenum: New York, 2005.
- <u>http://life.bio.sunysb.edu/morph/</u> (accessed Jun 27, 2011).
- <u>http://www.morphometrics.org/morphmet.html</u> (accessed Jun 27, 2011).



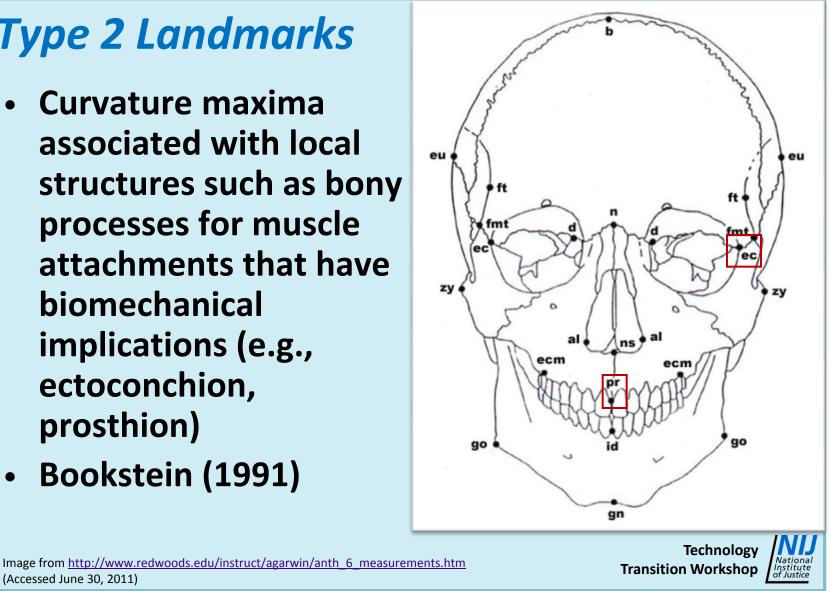
Morphometric Data

- Linear distances
- Outlines

EFA



Type 1 Landmarks


- Bookstein (1991) "orange book"
- **Discrete juxtapositions** ulletof tissues
 - e.g., triple points of suture intersections

Version 03DEC2009. http://www.3d-id.org (accessed Jun 30, 2011).

Type 2 Landmarks

- Curvature maxima associated with local structures such as bony processes for muscle attachments that have biomechanical implications (e.g., ectoconchion, prosthion)
- Bookstein (1991)

Advances in Forensic Anthropology TTW

(Accessed June 30, 2011)

Type 3 Landmarks

- Extremal points defined with respect to some distant structure
 - Like endpoints of maximum breadth or length (e.g., euryon)
- Bookstein (1991)

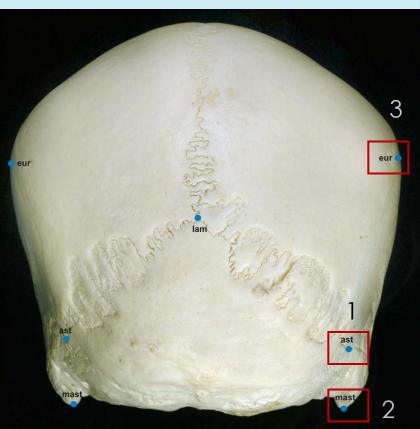
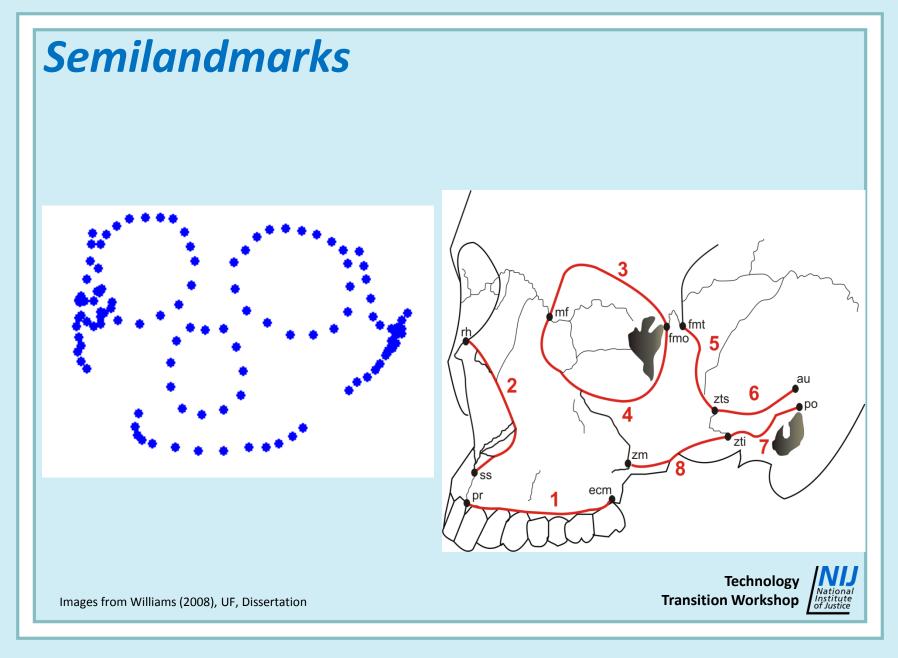
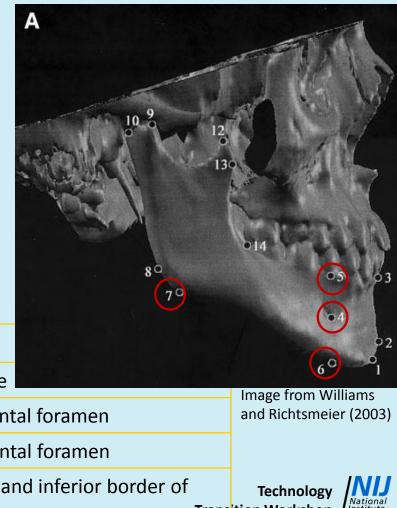



Image from: Slice, D. E.; Ross, A. *3D-ID: Geometric Morphometric Classification of Crania for Forensic Scientists*. Version 03DEC2009. <u>http://www.3d-id.org</u> (accessed Jun 30, 2011).


Technology Transition Workshop

Advances in Forensic Anthropology TTW

Landmark Types – Continued

- Constructed points
 - geometric combinations of other existing landmarks or lines erected at specified angles to "construct" a new landmark

Landmark	#	Description			
Mental Foramen	4	Anteromedial edge	69 201 Image from Williams and Richtsmeier (2003)		
Alveolar border of body	5	Directly above mental foramen			
Inferior border of body	6	Directly below mental foramen			
Gonion	7	Junction of ramus and inferior border of body Tran	Technology sition Workshop		

Landmark Types – Continued

- Fuzzy Landmarks
 - represent position of a biological structure that is precisely delineated, but occupies an area that is larger than a single point in space
 - ex.= frontal boss

Image from Valeri et al. (1998)

Reliability of Landmarks

• BEST

- Biological Landmarks
 - Type I most confidence
 - Type II intermediate
 - Type III least confidence
- WORST
 - Fuzzy and constructed landmarks

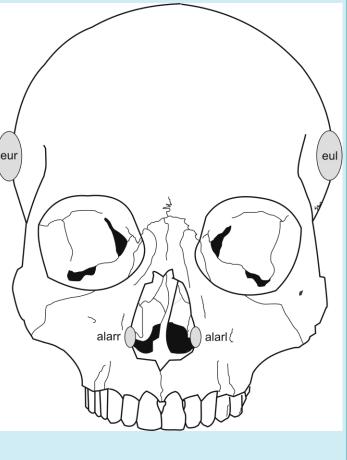
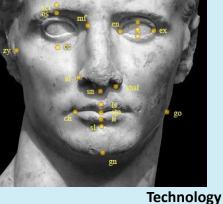


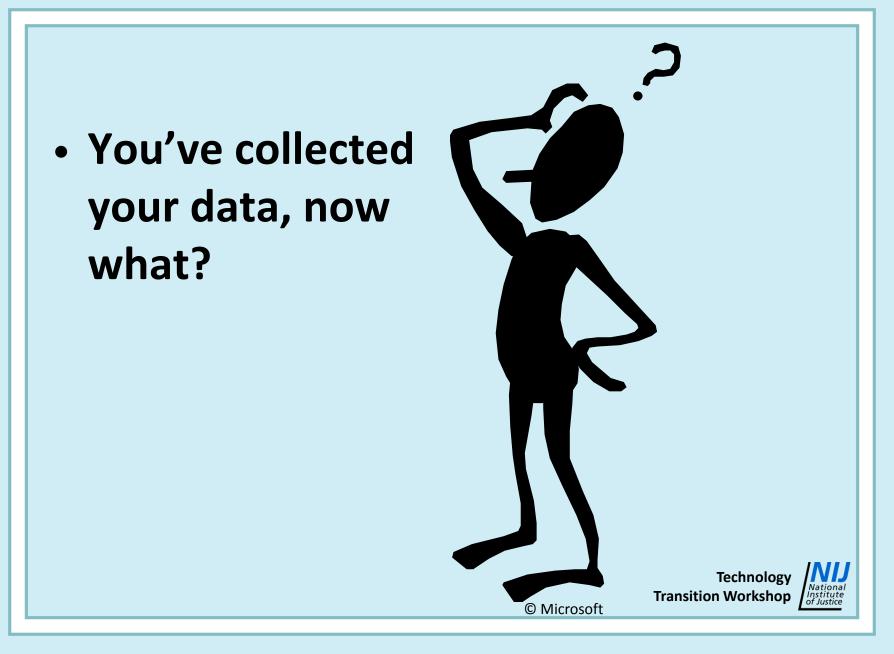
Image from Ross and Williams (2008)

Technology Transition Workshop



Data Acquisition Devices

From Computer Desktop Encyclopedia Reproduced with permission. © 1997 Polhemus, Inc.

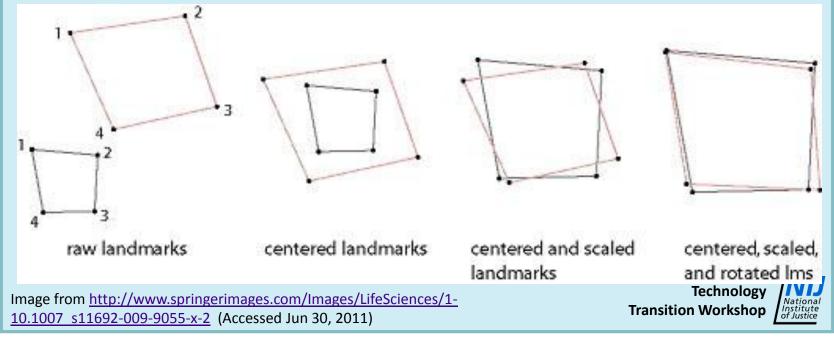

Transition Workshop

Digitizers

- http://www.polhemus.com/ (Accessed Jul 21, 2011)
- http://www.3d-microscribe.com/ (Accessed Jul 21, 2011)

Methods Available for Assessing Landmark Error

- 1. Superimposition of landmark configurations
- 2. Euclidean distances
- 3. Maintaining constant orientation
- 4. Partial superimposition of landmark configurations



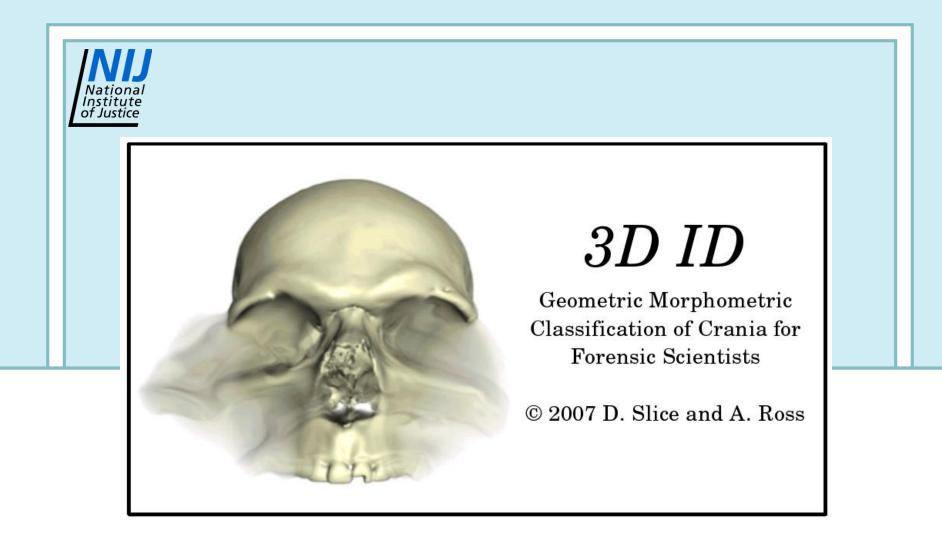
Generalized Procrustes Analysis (GPA)

- Select specimen to approximate mean
- Fit entire sample to that specimen using OPA (Ordinary Procrustes Analysis)
- Recompute the mean as the simple average of fitted coordinates
- Fit entire sample to new estimate
- Repeat last two steps until convergence

1. Superimposition Techniques

- Generalized Procrustes Analysis (GPA)
 - Orientation of the specimens between data acquisition does not need to be maintained
 - Optimally translates, scales, and rotates the data into a common coordinate system

2. Euclidean Distance Methods


- Euclidean Distance = straight line distance between objects
- Euclidean Distance Matrix Analysis (EDMA)
 - Coordinate data rewritten as matrix of interlandmark distances
 - Coordinate system invariance
 - distances remain the same regardless of specimen position or orientation
 - Assesses error contained within all 3 axes simultaneously
 Technology Transition Workshop

Software (Shareware)

- http://life.bio.sunysb.edu/morph/ (Accessed Jul 21, 2011)
- Morphologika
- PAST
- Morphometrika for Macs
- Morpheus et al.

Technology Transition Workshop

Slice, D. E.; Ross, A. *3D-ID: Geometric Morphometric Classification of Crania for Forensic Scientists*. Version 03DEC2009. <u>http://www.3d-id.org</u> (accessed Jun 30, 2011).

3D-ID Development Project Goals

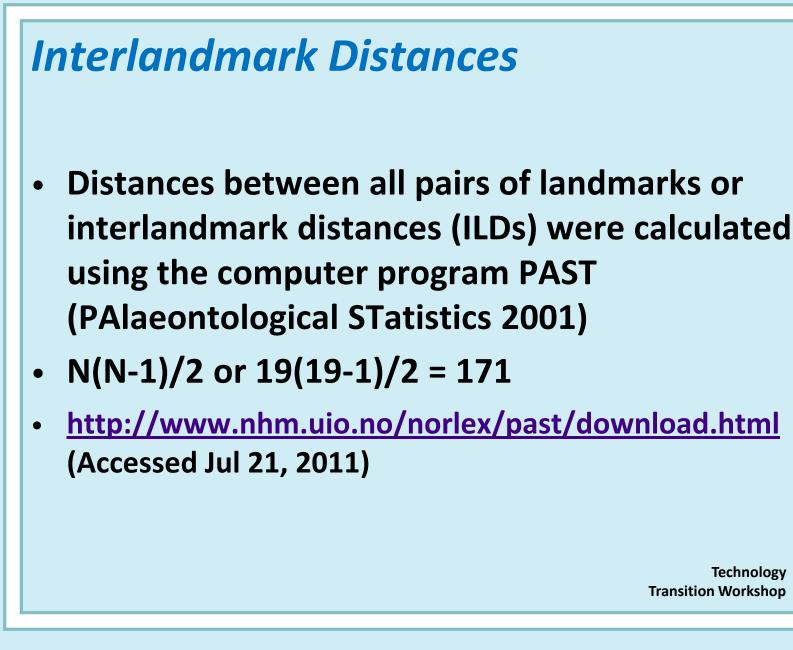
- Develop population-specific classification criteria and associated software to aid in identification
- Product to have implications for criminal investigations and mass fatalities incidents
- Have tools incorporate new threedimensional methods called geometric morphometrics

3D-ID Objectives

- Compile an extensible population database derived from 3D landmark coordinate data
- Develop and validate population-specific procedures for the classification of unknown individuals
- Develop cross-platform software for the use in forensic applications of human identification

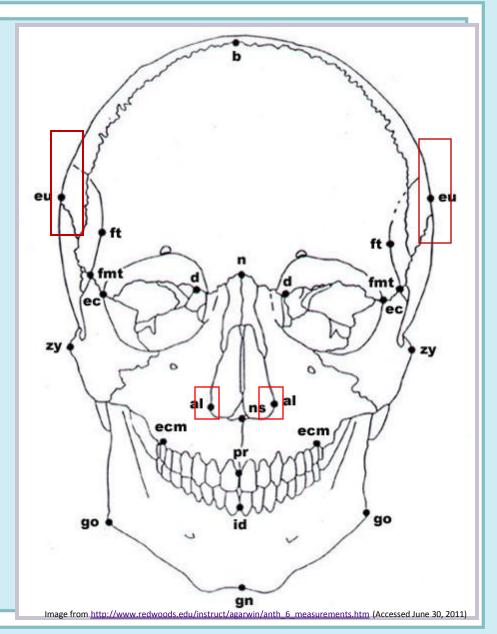
Technology Transition Workshop

Reliability and Precision Landmarks = 19


- Alare I/r
- Bregma
- Dacryon l/r
- Euryon l/r
- Lambda
- Metopion
- Occipital subtense

- Opisthocranion
- Parietal subtense
- Radiometer point l/r
- Subspinale
- Zygion l/r
- Zygoorbitale l/r

3D-ID Repeatability Research Design


- N = 3 skulls from the C.A. Pound Human ID Lab
- 2 Observers
- 3 Digitizing sessions per skull
- Each skull was digitized 3 times by each observer for a total of 6 digitizing sessions per skull
- Skulls were not "fixed"

Digitization Error

- 32% of the ILDs showed digitizing error in excess of 5% or (54/171)
- 37% of these included euryon
- 28% of these included alare
- Radiometer point and opisthocranion were problematic

Betv	vee	n-Obsei	rver l	/aria	tion	
ILD	DF	Type III SS	MS	F Value	Pr>F	
Alarl-dacr	1	3.89	3.89	29.98	0.03	
Alarl-zygr	1	36.38	36.38	70.85	0.01	
Alarr-paspt	1	63.13	63.13	19.39	0.05	
Brg-radpt	1	13.23	13.23	27.03	0.04	
Dacl-rdpt	1	5.05	5.05	24.24	0.04	
Dacl-zygool	1	6.02	6.02	22.78	0.04	
Dacr-zygool	1	6.14	6.14	233.91	0.004	
Eul-radpt	1	196.67	196.67	167.09	0.006	
Eul-lam	1	111.36	111.36	44.53	0.02	
Eurr-ocspt	1	700.79	700.79	36.1	0.03	
Met-ocspt	1	71.72	71.72	29.98	0.03	
Paspt-radptr	1	9.93	9.93	20.01	0.05	1
Paspt-ssp	1	50.97	50.97	69.64	0.01	
Ssp-zygool	1	0.58	0.58	30.88	0.03	

Advances in Forensic Anthropology TTW

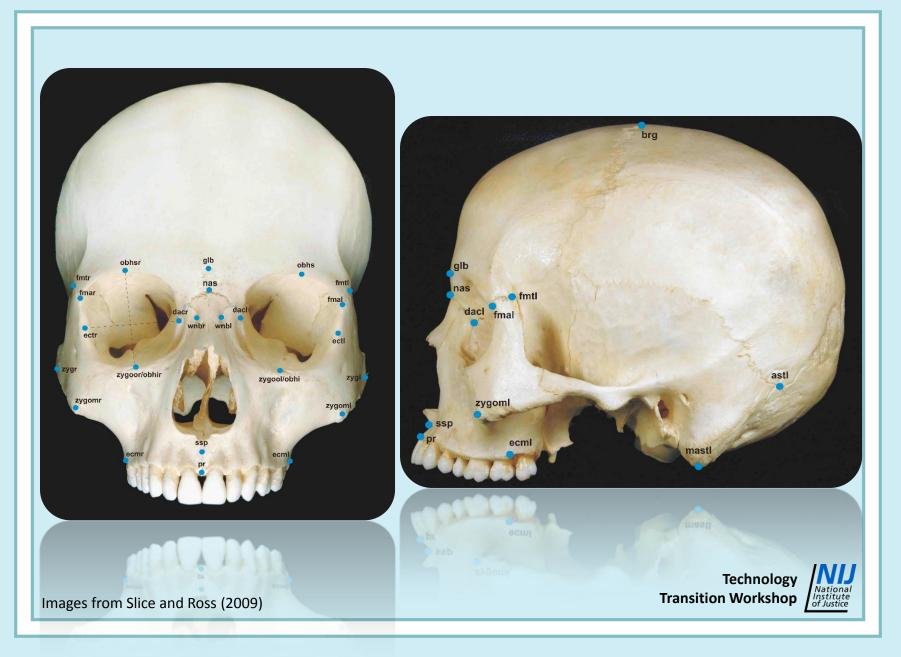
Fundamentals of Traditional Craniometrics and Geometric Morphometrics

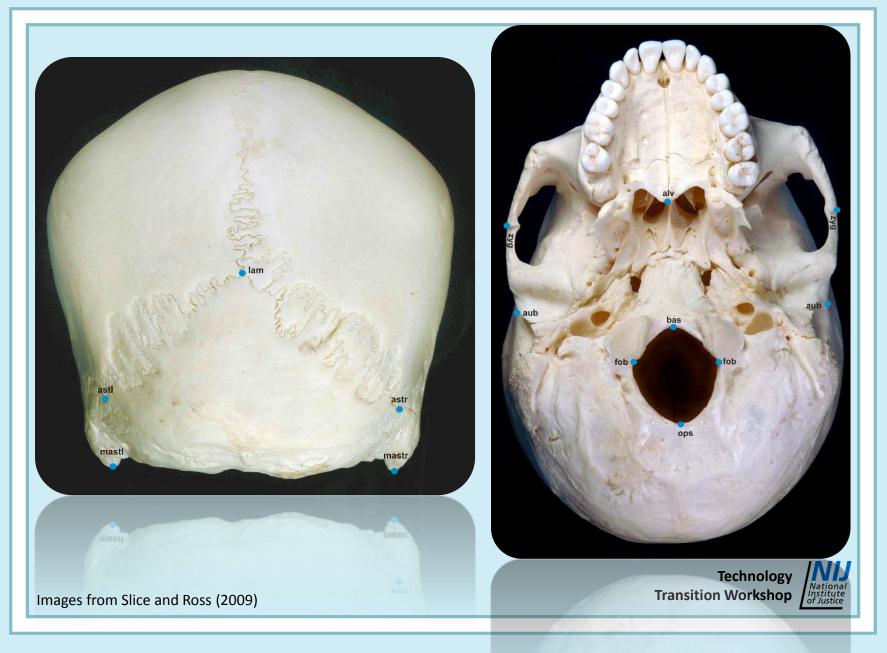
Recommendations

- Caution against using Type 3 landmarks in geometric morphometrics
 - Type 3 landmarks have considerable error associated with them
- Recommend only using Type 1 and 2 landmarks

3D-ID

www.3d-id.org


Developed to provide a means of applying geometric morphometrics to problems of ancestry and sex determination to forensic scientists.


Project Landmarks

- Originally 75 landmarks
- Accuracy and repeatability Type III = poor performance
- Continue to collect 75 landmarks for future analysis, but...
- 3D-ID reference data uses 34/5 landmarks for classification (inferior nasal border)
- Definitions from Howells (1973) and Moore-Jansen, Ousley and Jantz (1994)
 Technology Transition Workshop

Advances in Forensic Anthropology TTW

Advances in Forensic Anthropology TTW

Fundamentals of Traditional Craniometrics and Geometric Morphometrics

Reference Populations

N=1089

American Museum of Natural History C.A. Pound Human Identification Laboratory **Georgia Bureau of Investigation** Juan Munizaga Collection, Universidad de Chile Luis Lopes Collection, Bocage Museum, Lisbon, Portugal Maxwell Museum Morgue Judicial, Republic of Panama North Carolina Office of the Chief Medical Examiner **Oloriz Collection in Spain Samuel Morton Collection Terry Collection** The Donated Collection, University of Tennessee Technology **Transition Workshop**

00		3D-ID
Program Den	no X-val Help	
		Data Options Report Log
	Case #:	
	Notes:	
Lan	dmark	Coordinates
	left_asterion	
	right_asterion	
	basion	
	bregma	
	left_dacryon	
	right_dacryon	
	left_ectomalare	
	right_ectomalare	
	left_ectoconchion	
ri	ght_ectoconchion	
left_from	ntomalare_anterior	
right_from	tomalare_anterior	
left fronte	malare_temporale	

Image courtesy of Dr. Ann H. Ross

00	3D-ID
Program Dem	no X-val Help
	Data Options Report Log
	GENERAL OPTIONS
	Include size
	Shape Dimensions To Use: 53
	Minimum Reference Sample Size = Shape Dimensions X 1
	• Determine group and sex
	Females only
	O Males only
	GROUPS
	🗹 African – female
	🗹 African – male
	🗹 African_American – female
	🗹 African_American - male
	🗹 Circumcaribbean – female
	🗹 Circumcaribbean – male
	🗹 East_Asian – female
	🗹 East_Asian – male
	🗹 European – female
	🗹 European – male

3D-ID – Process

Program Demo X-val Help	
	Data Options Report Log
nasion	
left_lower_orbital_border	
right_lower_orbital_border	
left_upper_orbital_border	
right_upper_orbital_border	
opisthion	
prosthion	
subspinale	
left_nasomaxillary_suture_pinch	
right_nasomaxillary_suture_pinch	
left_zygion	
left_zygomaxillare	
right_zygomaxillare	
left_zygoorbitale	
right_zygoorbitale	
right_zygion	
(Process

Image courtesy of Dr. Ann H. Ross

Individual Analysis: 3D-ID

🗐 3D-ID Program Demo X-val Help					
Data Options Report Log					
Case #: 365					
Notes:					_
					•
Landmark			Coordinates		
left_asterion 125.954	49 -112.8193	185.1908	5551 (m12(55		
right_asterion 167.853		179.2341			
basion 166.87		226.5679			
bregma 52.758	-198.6788	229.4546			
left_dacryon 126.23		293.1855			
right_dacryon 131.62		292.9268			
left_ectomalare					
right_ectomalare				<u> </u>	J
left_ectoconchion 115.063	29 -130.7915	282.1488			
right_ectoconchion 150.94	53 -205.9658	278.5736			
left_frontomalare_anterior					
right_frontomalare_anterior					
left_frontomalare_temporale	66 -131.1776	278.4643			
right_frontomalare_temporale 140.710	61 -212.3194	275.2763			
glabella 111.21	33 -178.0101	300.3008			-
lambda 100.45	66 -173.8986	142.0954			
left_mastoidale					
right_mastoidale					
nasion 122.26	34 -173.9972	299.9737			
left_lower_orbital_border					
right_lower_orbital_border					
left_upper_orbital_border					
right_upper_orbital_border					
opisthion 170.35	21 -149.8247	192.8887			
prosthion					
subspinale 165.48	35 -154.9861	302.063			
eft_nasomaxillary_suture_pinch					
ht_nasomaxillary_suture_pinch					
left_zygion					
left_zygomaxillare 142.70	32 -125.7803	284.2295			
right_zygomaxillare 172.35	55 -190.8628	279.6117			
left_zygoorbitale 138.103	21 -144.0896	291.1978			
right_zygoorbitale 154.56		289.9201			
right_zygion					
		Process	Imag	ge courtesy of Di	r. Ann H. I

- Three dimensions for 34 Type I and II cranial landmarks available for entry
- Capable of handling missing landmarks

Technology Transition Workshop

3D-ID - Report

ase #: 000 otes: Example data from 3D-ID. ptions	Data Options	Report Lo	og
otes: Example data from 3D-ID. ptions			
ptions			
<pre>FitMethod: CVA Include size: false Shape dimensions to use: 53 Minimum reference sample (per sha Minimum sample size (minShapeDim Determine group and sex: true Reference Data Set: data/3d_id.md ssessing group membership - Summary - Summary - African_American - female (113): African_American - male (139): European - female (58): European - male (62): European_American - female (115): European_American - male (207): </pre>	X minRefSample) Bt 87.4648 70.0710 107.1648 90.6211 88.5427	: 53 Posterior 0.0004 0.8910 0.0000 0.0001 0.0001 0.0002	0.0131 0.1494 <=== 0.0004 0.0086

Applications

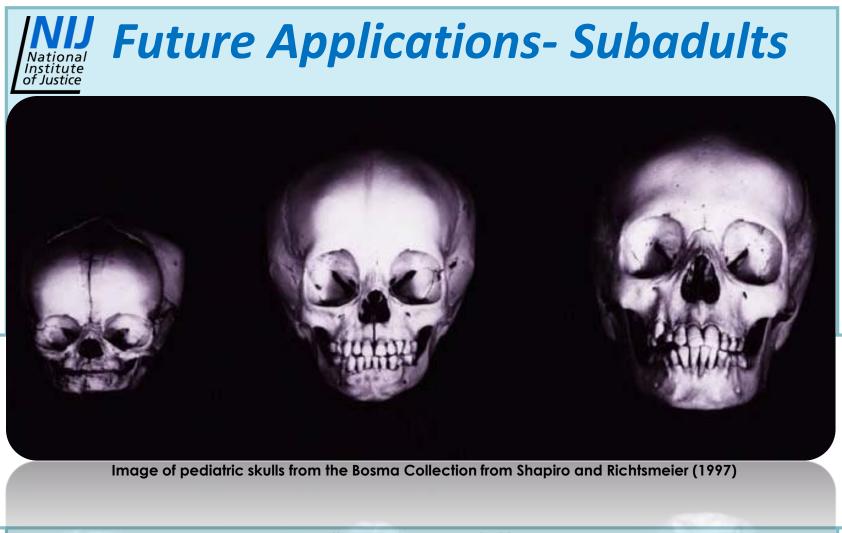
- Positively identified case = Euro-American male
 - 3D-ID: European-American male

posterior probability = 0.6565 typicality = 0.332

FORDISC: White Male

posterior probability = 0.775 typicality = 0.362

- Subadults = 10, 11-16yo Portuguese
 - 10 = European, European-American
 - 90% (9/10) correctly classified to sex


Technology

Transition Workshop

3D-ID Summary

- Available, solid, works well
- Lots of potential as platform for new, enhanced methods
 - Proper CVA
 - Alternative fitting procedures
 - Generalized classifiers
 - Age-adjusted classification
 - User programmable interface

Technology Transition Workshop

Following data compiled by: Shanna E. Williams, Ph.D – University of Florida Ann H. Ross, Ph.D – North Carolina State University

Advances in Forensic Anthropology TTW

Fundamentals of Traditional Craniometrics and Geometric Morphometrics

Group Analysis: Discriminant Function Analysis Cross Validation Results Percentage Classified into Group (PCs 1-9)					
	Cuban	Historic African Slave	African- American	Portuguese Adult	Portuguese Subadult
Cuban	33.3%	0%	9.5%	52.4%	4.75%
Historic African Slave	0%	35.7%	35.7%	21.3%	7.14%
African- American	2.1%	0%	97.9%	0%	0%
Portuguese Adult	26.4%	1.9%	5.7%	64.2%	1.9%
Portuguese Subadult	0%	0%	0%	50%	50%

Advances in Forensic Anthropology TTW

Fundamentals of Traditional Craniometrics and Geometric Morphometrics

Conclusions and Implications

- GM techniques capable of correctly characterizing ancestry in subadult crania
- Study highlights value of incorporating GM techniques, such as 3D-ID, into standard forensic practices
 - Particularly when dealing with unknown subadult skeletal material

Image courtesy of Dr. Ann H. Ross

Fundamentals of Traditional Craniometrics and Geometric Morphometrics

Acknowledgements

Eugenio Aspillaga (Universidad de Chile), Greg Berg, Hugo Cardoso (Bocage Museum, Portugal), María Dolores Garralda (Universidad Complutense, Spain), Richard Jantz, Erin Kimmerle, Antonio Martinez, Janet Monge, Jose Vicente Pachar (Director General, Instituto de Medicina Legal y Ciencias Forenses, Panama), Juan Carlos Prados (Departamento de Anatomía e Embrología Humana, Spain), José Luis Prieto (Instituto Anatómico Forense, Spain), Rick Snow, Kate Spradley, Doug Ubelaker, Danny Wescott, Shanna Williams, American Museum of Natural History, C.A. Pound Human Identification Lab, Georgia Bureau of Investigation, North Carolina Office of the Chief Medical Examiner

and

National Institute of Justice

Cited Scientific References

Bookstein, F.L. Morhometric Tools for Landmark Data: Geometry and Biology; Cambridge University: New York, 1991.

Howells, W.W. Cranial Variation in Man: A Study by Multivariate Analysis of Patterns of Difference Among Recent Human Populations; Peabody Museum of Archaeology and Ethnology, Harvard University: Cambridge, MA, 1973.

Mitteroecker, P.; Gunz, P. Advances in Geometric Morphometrics. *Evolutionary Biology* 2009, 36(2). <u>http://www.springerlink.com/content/j1324137150406ju/fulltext.pdf</u> (Accessed Jul 21, 2011)

Moore-Jansen, P.H.; Ousley, S.D.; Jantz, R.L. Data Collection Procedures for Forensic Skeletal Material, 3rd Edition; University of Tennessee Forensic Anthropology Series: Knoxville, TN, 1994.

Cited Scientific References (Continued)

Ross, A.H.; Williams, S. Testing Repeatability and Error of Coordinate Landmark Data Acquired from Crania. *Journal of Forensic Sciences* 2008, 53, 782-785.

Shapirio, D.; Richtsmeier, J.T. Brief Communication: A Sample of Pediatric Skulls Available for Study. *Amer J Phys Anthropol* 1997, 103, 415-416. <u>http://www.getahead.psu.edu/PDF/american%20journal%20of%20physical%20</u> <u>anthropology.pdf</u> (Accessed Jun 27, 2011)

Slice, D.E. Modern Morphometrics in Physical Anthropology; Kluwar Academic, Plenum: New York, 2005.

Slice, D. E.; Ross, A. *3D-ID: Geometric Morphometric Classification of Crania for Forensic Scientists*. Version 03DEC2009. <u>http://www.3d-id.org</u> (accessed Jun 30, 2011).

Cited Scientific References (Continued)

Valeri, C; Cole, T.M.,III; Lele, S.; Richtsmeier, J.T. Capturing Data From Three-Dimensional Surfaces Using Fuzzy Landmarks. *Amer J Phys Anthropol* 1998, 107(1), 113-124.

Williams, F.L.; Richtsmeier, J.T. Comparison of Mandibular Landmarks from Computed Tomography and 3D Digitizer Data. *Clinical Anatomy* 2003, 16, 494– 500.

Williams, S.E. Is Aging Only Skin Deep?: Assessing Change in the Facial Bone Curvature With Age. Ph.D. Thesis, University of Florida, Gainesville, FL, 2008.

Questions?

Technology Transition Workshops are a project of NIJ's Forensic Technology Center of Excellence, operated by the National Forensic Science Technology Center (<u>www.nfstc.org</u>), funded through cooperative agreement #2010-DN-BX-K210.

These training materials are only for the course instructors and course participants and are for purposes associated solely for this course. Some of the materials may be subject to copyrights held by third parties. None of these materials may be: a) further disseminated or b) accessed by or made available to others. Individuals with questions concerning the permissibility of using these materials are advised to consult NFSTC at info@nfstc.org.

Technology Transition Workshop

Contact Information

Ann H. Ross, Ph.D. North Carolina State University CB 8107, Raleigh NC 27695 919-515-9021 ann_ross@ncsu.edu

