Impression \& Pattern Evidence Symposium August 2-5, 2010, Florida

Statistical approach for an efficient use of footwear marks in crime analysis

Dr. Alexandre Girod
Chef de l'Identité Judiciaire Vaud - Switzerland

Introduction

- Serious Crime - Property Crime

- Physical evidence
- Reference material
- The aim is always the identification of the offender(s) through the collected physical evidence

> Crime analysis - Serious Crime

- Important resources, many physical evidence
- Without suspect, Police forces are always in trouble!
- Property Crime
- Less resources for work, physical evidence
- Without suspect, we wait on another case(s), on "other chance"
- Police forces have in such cases not too much pressure

Source attribution

Potential source(s)

Physical evidence collected on crime scenes

Will trigger police Investigation on the source

Attribution of the source \neq Identification of the offender

- Links with Human ID marks

- Links with Objects ID marks

Shoeprints potential

- Shoeprints are a type of physical evidence often collected
- Identification process is seen as the most important aim
- Probability to attribute shoeprints to knowns is relatively rare
- We need "relevant" suspects' pairs of shoes and their collection is never easy

POLICE

Shoeprints potential

- What is the value of such investigative links (general design only)?
- What is the efficient strategy for such a use?
- You need :
- A database with a simple and relevant codification system
- Staff, who codifies all the different designs, and
- Analyst(s), who links the shoeprints with the same design and creates groups.

Impression \& Pattern Evidence Symposium August 2-5, 2010, Florida

First Step Groups analysis

Shoeprints Intelligence

Shoeprints Intelligence (January - February 09)

Switzerland

Impression \& Pattern Evidence Symposium August 2-5, 2010, Florida

$$
\begin{aligned}
& \text { Second Step } \\
& \text { Occurrences analysis }
\end{aligned}
$$

Research and results

- Do we find often several times the same designs?
- If yes, what is the proportion of occurrences?
- Roughly 70 \% of the designs collected are found only one or twice on crime scenes during 11 years (1998-2009, $N>12,000$).
- Hence : We have about 30 \% of shoeprints collec

Research and results

- This proportion of 70% is important and surprising.
- The other designs ($30 \%, n>4,000$) were distributed in 404 clusters that range from 3 to 172 occurrences.
- The next graph shows the distribution of these clusters with their occurrences.

Distribution of the 4,078 shoeprints collected during eleven years (1998 to 2009) in Vaud area (30 \%) $\mathrm{N}>\mathbf{1 2 , 0 0 0 \quad n > 4 , 0 0 0}$
3×561
$9 \wedge^{1} \lambda^{3}$
Number of occurrences

Distribution of the 4,078 shoeprints collected during eleven years (1998 to 2009) in Vaud area (30 \%)

Time analysis

- A same design collected several times in the same area could be efficient for a crime analysis.
- Particularly if the period of time is short and the number of occurrences important.
- What is the life time of the different designs collected on crime scenes in Vaud area?

Impression \& Pattern Evidence Symposium August 2-5, 2010, Florida

Third Step Time analysis

Life time analysis

- 42 \% of the designs have a life time less than three months.
- 58 \% have a life time less than one year.
- 16 \% between one and two years.
- 12% between two and three years.
- Hence : Around 60 \% of shoeprints collected can be used for crime analysis because their life time is less than 1 year

Comparisons between time and occurrences

- Many designs have a long life time with a small number of occurrences.
- Other have a long life time too but with a large number of occurrences.
- Many designs have a short life time with a small number of occurrences.
- Designs have a short life time with a large number of occurrences.

Impression \& Pattern Evidence Symposium August 2-5, 2010, Florida

$$
\begin{aligned}
& \text { 4th Step } \\
& \text { Life time and occurrences } \\
& \text { analysis }
\end{aligned}
$$

Comparisons between lifetime and occurrences

Comparisons between lifetime and occurrences

Comparisons between lifetime and occurrences

- Designs with a number of occurrences higher than 5 or 10 is retained for crime analysis in Vaud area
- Particularly, if the designs have a short life time (less than six months)

Comparisons between time and occurrences

Research and results

- With such good results, we decided to work with a bigger geographical area
- Romandie area with more than 2.5 million people
- We have to change our operational strategy and our IT infrastructure
- Because we have no time for analysing all the clusters of the different police forces

Research and results

- We obtain good results too
- The number of occurrences should be higher than 15 for an efficient crime analysis in this bigger area

Conclusion

- A statistical approach with shoeprints evidence could detect automatically the presence of potential links between different cases
- The presence of the same design could show burglars' activity, particularly when during a short period of time this number of occurrences is high

Questions ?

Thank you

