Integration of Pore Characteristics into the Evaluation of Fingerprint Evidence

Alexandre Anthonioz & Christophe Champod

Impression & Pattern Evidence Symposium
August, 4th 2010

Objectives of the research

- > Design a model to assess the contribution of pores in the fingerprint comparison process
 - Account for both within and between fingers variability
 - Using an approach based on Likelihood Ratios (LRs) to carry out the integration of pores in a framework including 1st and 2nd level details

What is the probability of the evidence (E) if (|) the mark and the print have a common source (H_p)?

Within source variability of marks/prints
Time, substrate, clarity, distortion

Between sources variability of marks/prints
Selectivity of the features among friction ridge skin
impressions

What is the probability of the evidence (E) if (|) an unknown person left the mark (H_d)?

Objectives of the research

- Design an algorithm to automatically extract pores
- Define a metric able to highlight the similarities and dissimilarities between sets of pores

Data acquisition

> Acquisition of databases for within and between variability

about 2700dpi resolution

Data acquisition

- > L3 database for between variability (L3BSDB)
 - > 54 donors for 1,728 fingerprints
 - > 4 impressions of eight fingers
 - > Captured without distortion
- L3 database for within variability (L3WSDB)
 - > 14 donors for **756 fingerprints**
 - > Recorded under various distortion and pressure conditions
 - > 3 fingers / 9 distortions / 2 sessions

- > Pores extraction based on pore types:
 - > Open (on one or two sides of the ridge) or Closed

Closed Open 2S Open 1S

- > Closed pores
 - > Edge detection (Canny filtering)
 - > Heuristics applied to remove falsely detected pores

- > Open pores
 - > Based on the skeletonization of the valleys
 - > Detection of end and bifurcation pixels
 - > Heuristics applied to remove falsely detected pores

Metric for pores

- Measures on pores on a single ridge without any reference point were not effective
- > Adding a reference point increased efficiency
 - > One ridge poorly discriminating
 - > Consecutive ridges considered

On adjacent ridges with a reference point

Metric for pores

- > One metric based on three scores:
 - > Based on distances between each pore and the minutia
 - Based on angles between each pair of consecutive matching segments
 - > Based on the centre of mass of the remaining segments

Metric for pores

> Fusion of the three scores in a single score

or

Betweenvariability

n scores computed against samples coming from different sources

The density is estimated using a Gaussian Mixture Model

>When H_p is true:

The mark is compared against a corresponding sample

We want to assess

We call them LR_{Hp}

>When H_d is true:

The mark is compared against a print taken at random in the non related samples

We call them LR_{Hd}

- > When using the product score
 - > The Rates of Misleading Evidence in favor of the Prosecution (RMEP) are extremely low (0 to 0.5%)
 - > The magnitude of the LRs under H_p is difficult to interpret (up to 10^{300})
- > When using the sum score
 - The RMEP are higher but still low (around 5%) and with small LRs
 - > The magnitude of the LRs remains more reasonable
- > For both scores rules, the Rates of Misleading Evidence in favor of the Defense (RMED) have values contained between 20% and 25%

Illustration

Mark

Reference

(Sum Score)

Conclusions

- > The metric developed enables the interpretation of distances between pore configurations (when used in conjunction with a 2nd level feature)
- It could be integrated into a model taking into account information about the three levels of features