

Biological Screening Workshop

- Colorless fluid secreted by three glands in the mouth:
 - Sublingual
 - Submandibular
 - Parotid
- Saliva from parotid glands contain amylases, enzymes, which aid in the digestion of carbohydrates
- Saliva is composed of electrolytes, enzymes, mucus

- Screening for saliva is based on detection of high levels of amylase in the sample
 - It is not a confirmatory test; amylase is found in other body fluids:
 - Serum, urine, sweat, lip mucous, semen, feces, etc.
 - The concentration of amylase in saliva is variable among individual; if amylase is not detected in a sample it does not mean saliva is not present

- Alternative Light Sources (ALS) can be used to aid in locating saliva stains
 - The intensity of the fluorescence can be affected by the substrate, concentration of the stain, and other body fluids
 - Saliva does not fluoresce as intensely as semen

- α-amylase
 - Found in humans elephants, rats, and pigs
 - Cleaves starch at its internal bonds (acts on α 1,4 glucosidic linkages) allowing for compound hydrolysis
 - The total breakdown of starch to maltose or glucose and dextrin

Amylase

- One of the earliest tests for amylase was the starch-iodine test
- Iodine solutions cause starch to turn a deep blue color
- Amylase is a starch hydrolyzing enzyme
- The presence of amylase causes the disappearance of the blue color (due to hydrolysis of the starch) and can be used an indicator for the presence of amylase

Amylase Testing – Limitations

- Not confirmatory
- Not specific for human amylase
- Is specific for α-amylase
 - $-\alpha$ -amylase can be found in other species

Presumptive Amylase Tests

- Starch Iodine Radial Diffusion Test
- Phadebas® Test
- SALIgAE® Test
- Rapid Stain Identification (RSID®) of Saliva

Starch Iodine Radial Diffusion Test - Overview

- Gel test plate that contains Starch with sample and control wells
- Control s are commonly: a dilution of 1:100 and 1:500 of fresh saliva control and a negative sample
- The plate is incubated 6 hours to overnight and lodine is added to stain the plate
- Starch with Iodine creates a blue color
- If saliva is present, it will break down the starch creating a clearing in the blue
- The clearing appears in a ring and are measured

Starch Iodine Radial Diffusion Test – Results

- A positive test is one in which the ring size is equal or greater in size than the positive control
 - Some laboratories assess the level if more than one positive control is run
- An inconclusive result is one in which the ring size is less than the positive control but greater than the negative control
- A negative result is an absence of any clear ring

Amylase Diffusion Video Biological Screening Workshop

Phadebas® Test

- Commercially available
 - Blue starch polymer
 - Blue dye covalently attached to the starch and upon hydrolysis a product is obtained which is colorimetrically evaluated

Phadebas® Test – How to Perform

- Place a small piece of the sample material in a 10 x 75 test tube.
- 2. In a second tube, place an equal-sized piece of known saliva stain as a positive control.
- In a third tube add no sample (negative control).
- 4. Add 1.0 ml distilled water and ¼ Phadebas® tablet to each tube using clean forceps.
- 5. Vortex to mix thoroughly.

Phadebas® Test – How to Perform

- 6. Incubate at 37°C for 30 minutes.
- 7. Add 0.25 ml of 0.5 M sodium hydroxide to each tube to stop the reaction.
- 8. Centrifuge for five minutes.

Phadebas® Test - Interpretation

- A transparent dark blue supernatant of equal or greater intensity than the positive control is regarded as a positive test for amylase activity
- A blue color that is less intense than the positive control but darker than the negative control is considered inconclusive for presence of amylase
- No blue color is considered negative for presence of amylase

Phadebas® Test

http://www.uni-wuerzburg.de/ddch/liquits/Amylasedirekt.jpg

Phadebas Video Biological Screening Workshop

SALIGAE® Test

- Test available from Abacus Diagnostics®
- Sensitive, simple, and reported to be more accurate than other tests
- Solution in a tube
 - Changes color with addition of an extract containing saliva
 - Exact mechanism proprietary
 - Sensitivity about 1:1000

SALIGAE® Test – How to Perform

- Place approximately 5 mm² cutting or ½ of a swab into a sterile 1.5 ml microcentrifuge tube.
- 2. Place an equal-sized piece of known saliva stain as a positive control in a separate sterile 1.5 ml microcentrifuge tube.
- 3. In a third tube add no sample (negative control).
- 4. Pipette 30 μ l to 50 μ l of sterile deionized water into the tube.

SALIgAE® Test – How to Perform

- 5. Incubate for 30 minutes at room temperature.
- Allow the test vials to warm to room temperature.
- Remove bubbles from the test vials by gently tapping the vials.
- 8. Add 8 μl of sample to the test vial.
- Mix gently.

SALIgAE® Test – How to Perform

- 10. Read the result after 10 minutes.
 - A yellow color change indicates a positive result
 - No color change indicates a negative result
 - A negative result indicates that there is no saliva present or is below the limit of detection of the test

SALIGAE® Test

http://www.dnalabsinternational.com/SalivaValidation.pdf

SALIGaE Video Biological Screening Workshop

Rapid Stain Identification (RSID®) of Saliva – How to Perform

- Place a small cutting of the stain into a 1.5 ml microcentrifuge tube.
- 2. Add 200 to 300 μl RSID Extraction Buffer.
- 3. Incubate for 1 to 2 hours at room temperature.
- 4. Remove 20 μl of extracted sample and add it to 80 μl of RSID TBS Running Buffer in a new tube.
- 5. Add the total 100 μ l to the sample well of the RSID® card.
- 6. Read result after 10 minutes.

Rapid Stain Identification (RSID®) of Saliva – How to Perform

- Positive result
 - Test line and control line are both present
- Negative result
 - Only control line is present
- Invalid result
 - No line at all or only test line is present (control line absent)

Rapid Stain Identification (RSID®) of Saliva – Limitations

- False positives with breast milk, fecal material, and vaginal fluid
- False negative high dose hook effect
 - Sample containing up to 50 μl saliva did not result in high dose hook effect
 - If high dose hook effect is possible, dilute using 1:100 dilution of sample

Questions? Biological Screening Workshop