

**Biological Screening Workshop** 

## **Laboratory Orientation**

#### **Laboratory Orientation**

- Safety
- Clean technique
- Reagent preparation
- Use of basic equipment
- Quality assurance



### Safety

- National Forensic Science Technology Center (NFSTC)
  - Environmental, Health, and Safety Program (EH&S)





#### NFSTC EH&S Program

- The NFSTC EH&S operations manual is divided into five separate sections or plans:
  - General Office Safety Plan
  - Laboratory Safety Plan
  - Emergency Action Plan
  - Chemical Hygiene Plan
  - Biohazard Exposure Control Plan



#### Laboratory Safety Plan

#### Rules that apply to all laboratory sections:

- No eating, drinking, applying cosmetics or adjusting eye contacts
- No running, jumping, or horseplay
- All spills will be cleaned up immediately
- Know where the necessary spill kits are located





#### Laboratory Safety Plan (continued)

 Always wash your hands before leaving the laboratory

- Leave the laboratory clean and organized
- No sandals or open-toed shoes
- Appropriate lab attire should be worn to protect against spills



#### Laboratory Safety Plan (continued)

- Lab coats are NOT to be worn outside of the laboratory areas
- Prevent chemical inhalation exposure (a mode of entry)
  - No "sniff-testing"
- Prevent chemical ingestion exposure (another mode of entry)
  - Never pipette by mouth
  - Always use a bulb to pipette





#### **Emergency Action Plan**

- Know your evacuation routes
- Know fire extinguisher, AED, drenching hose, and first aid kit locations





## **Emergency Action Plan (continued)**

- Know what to do in case of a:
  - Fire emergency
  - Laboratory injury/accident emergency



- Bomb threat emergency
- Chemical spill/exposure emergency
- Biological spill/exposure emergency
- Hurricane emergency/preparedness
- Other natural disaster emergencies/preparedness





## Chemical Hygiene Plan (a.k.a. Hazard Communication Plan)

- Consult MSDS before using any chemical
- Always use personal protective equipment (PPE)
  - Gloves
  - Safety glasses
  - Lab coat



- Utilize chemical hoods to limit exposure
- Use and dispose of all chemicals properly
- Store chemicals appropriately



## Chemical Hygiene Plan (a.k.a. Hazard Communication Plan)

- Insure that all containers are properly labeled per the National Fire Protection Association (NFPA)
- Be familiar with the "Chemical Hygiene Plan" section of the NFSTC EH&S program manual
- Contact the safety officer or laboratory staff for use or disposal assistance if needed





#### Biohazard Exposure Prevention Plan

- A biohazard is an biological agent that may be harmful to human health
- Biohazardous material may have been exposed to bloodborne pathogens (BBP) or Other potentially infectious materials (OPIM)
- Examples of BBP:
  - Hep A, Hep B, Hep C, HIV/AIDs
- Example of OPIM:





#### Biohazard Exposure Prevention Plan

 Treat all laboratory areas as being a potential biohazard



- Be familiar with the Biohazard Exposure Prevention Plan
- Use PPE at all times when handling biohazardous materials
- NEVER re-use or re-cap scalpels or needles!!!!



#### Biohazard Exposure Prevention Plan

- Dispose of all biohazardous waste in properly designated containers (red bags, sharps containers, etc.)
- After performing daily tasks, always disinfect work areas with fresh 10% bleach solution
- Wash hands after removing gloves
- Use biological hoods when necessary to limit exposure





#### **Biohazard Occupational Exposure**

- When a body fluid comes in contact with another person during the course of work via:
  - Sharps incident (e.g. needle stick or scalpel)
  - Non-intact skin
    - Chapped skin, dermatitis, or open wound
  - Eye membrane
  - Mucous membrane



#### Biohazard Exposure Incident

- Perform basic first aid
  - Wash injury with soap and water immediately
  - Clean with antiseptic solution and apply appropriate bandage
- Report and document incident
  - Inform NFSTC staff and Safety Officer immediately
  - Inform your supervisor immediately
- Seek medical attention, if necessary
  - Depending on risk assessment, may include: blood draw for baseline testing, prophylactic treatment

Biological Screening Morkshop Morkshop

#### Biohazard Exposure Incident (cont.)

#### Documentation

- Purpose is to describe the injury to help determine the risk level of the event and should include details:
  - Type of injury (instrument, scalpel, hollow-bore or solid needle)
  - Degree of body fluid on contaminating instrument
  - Depth of injury
  - First aid procedure that was followed
  - Immunization history
  - Index case or reference sample history, if known



#### Clean Technique

 Contamination can adversely effect the outcome of a case; therefore, it is essential that the laboratory/agency have procedures in place to limit, recognize, and address contamination



#### Clean Technique

- Refers to the laboratory practices employed to reduce the risk of contamination
- Transfer of DNA:
  - From analyst to sample
  - From environment to sample
  - Between samples (cross-contamination)



# Clean Technique – Work Surfaces and Equipment

- Clean frequently
  - Before contact with evidence
  - Between evidence items
  - After evidence processing is complete
- Common practice is to place a barrier on the bench top while processing evidence and between evidence:
  - Glassine weigh paper
  - Kimwipes<sup>®</sup>
  - Butcher and benchcote paper



# Clean Technique – Work Surfaces and Equipment

- Instruments should be cleaned just prior to use
  - Forceps, scissors, scalpels, and tube openers
- Sterile disposable instruments should be opened just prior to sample processing and discarded after one use
  - Do NOT re-use disposable items



# Clean Technique – Work Surfaces and Equipment

- Clean with 10% bleach solution or a commercially available sterilization reagent such as Cidex® Plus
- Rinse with purified water or alcohol to prevent the build up of sodium hypochlorite crystals
  - Instruments or equipment cleaned with bleach should be rinsed to avoid corrosion



## Clean Technique – Reagents and Sample Processing

- When possible, prepare reagents in bulk
  - Each analyst is then provided with an aliquot for his/her individual use
- Reagents should be kept closed when not in use
- Samples should be processed individually
  - Only one sample should be open at a time
- Unknown samples should be processed separately from reference samples
  - Processing may be separated by time and/or space



#### Clean Technique - Good Lab Practices

- Gloves should be worn throughout sample processing
  - At a minimum, gloves should be changed at the completion of each step of the process
  - If gloves become contaminated, discard them and replace with new ones
- Lab coats should be worn at all times while processing evidence



#### Reagent Preparation

- Laboratory should establish quality control procedures that include:
  - Preparation
    - Use of both purchased and prepared reagents
  - Reagent container labeling
  - Documentation
  - Quality control testing
  - Storage conditions
  - Expiration dates, as appropriate



#### Reagent Preparation

- For the purposes of this workshop, all reagents will be prepared by the instructors
- Students may need to perform simple and/or serial dilutions as directed by the instructor
- Dilutions of the body fluids have been prepared by the NFSTC staff



#### Dilutions – Simple Dilutions

- A volume of a liquid material is combined with an appropriate volume of a solvent (or diluent)
- The dilution factor is the total number of unit volumes in which the material will be dissolved
  - For example, a 1:10 dilution is achieved by combining 1 unit volume of diluent + 9 unit volumes of the solvent



#### **Dilutions – Serial Dilutions**

- Series of simple dilutions, used to quickly amplify the dilution factor
  - The source of dilution material for each step comes from the diluted material of the previous step
- The total dilution factor is calculated by multiplying the individual dilution factors of each step
  - 1:10 of a 1:10 yields a 1:100
  - 1:10 of a 1:10 of a 1:10 yields a 1:1000



#### Use of Basic Equipment

- Students will be shown how to use all necessary laboratory equipment
  - Pipettes
  - Centrifuges
  - Alternate Light Source (ALS)
    - Ensure safety glasses are worn when using this piece of equipment



#### **Quality Assurance**

- Quality Assurance (QA) consists of all the planned and systematic actions necessary to demonstrate that a product or service meets specified requirements for quality
- The planned and systematic actions are documented in the laboratory quality manual and standard operation procedures (SOP)



#### **Quality Assurance**

- Components of a quality system include:
  - Use of adequate facilities
  - Use of validated methods
  - Use of properly calibrated and functioning equipment
  - Establishment and implementation of a corrective action, when needed
  - Proper training and continuing education for personnel



#### **Quality Assurance (continued)**

- Components of a quality system include:
  - Use of appropriate evidence control procedures
  - Use of established analytical procedures
  - Reports
  - Participation in proficiency testing program
  - Participation a laboratory accreditation program



#### **Quality Assurance**

- For the purposes of this training, all trainees will be required to document each test performed, following the procedures provided
- Procedures established by your laboratory system may vary slightly from those provided in this training



# Questions? Biological Screening Workshop